メインコンテンツへ移動

メニュー
閉じる
閉じる

トピックス

  1. マイクロ波(5.8GHz)を用いた無線電力伝送受電回路で世界最高の電力変換効率と世界最短の応答時間を達成
研究
2024年2月19日(月)

マイクロ波(5.8GHz)を用いた無線電力伝送受電回路で世界最高の電力変換効率と世界最短の応答時間を達成

wireless_power transfer_1123_1123_01.jpg

図1 マイクロ波無線電力伝送の応用例

【概要】
信州大学大学院 総合理工学研究科 工学専攻 電子情報システム工学分野 宮地幸祐准教授と金沢工業大学 電気電子工学科 伊東健治教授らの研究グループは、このたびマイクロ波(5.8GHz)による無線電力伝送に用いる受電回路において、世界最高の電力変換効率となる64.4%と世界最短の応答時間である45.2μsを達成しました。本成果は、2024年2月18日から22日にかけてアメリカ サンフランシスコにて開催される、International Solid-State Circuits Conference (ISSCC)にて発表されます。

【屋内マイクロ波無線電力伝送について】
マイクロ波を用いる無線電力伝送は遠方への電力伝送が可能で、国内外の様々な機関で熾烈な研究開発が進められています。本研究は屋内での使用を想定しており、具体的には、ファクトリー・オートメーションなど工場、産業・物流用途、充電スポット等でのセンサーへの給電が応用として検討されています。図1に示すように、送電器からマイクロ波(5.8GHz)のビームをカメラやセンサーなどの受電端末に当て、バッテリーや機器を充電することが可能です。これにより、多数のセンサーへの電源配線やバッテリー交換が不要となります。建設、ものづくり、物流等の現場の工数削減による生産性の抜本的向上や、配線やバッテリー資材の節約に伴う二酸化炭素排出量と環境負荷の低減効果が期待されています。マイクロ波無線電力伝送は社会実装に向けて国内制度化が進められており、ステップ1(既存技術での実用化)として屋内で人のいない環境で3帯域(920MHz帯、2.4GHz帯、5.8GHz帯)で無線電力伝送専用の電波を割り当てる省令が令和4年に施行されました。現在はステップ2(人や他の無線システムが存在する状況での利用)の制度化が進められています。また、国際標準化についても活発な活動が行われています。
センサーなどの各受電端末には、マイクロ波を受けるアンテナと、アンテナで受けた電力で機器を充電する受電回路が搭載されています。受電回路はマイクロ波整流器(用語(1))と、DC-DCコンバータ(用語(2))で構成されます。受電回路は電力変換効率が高いことと、マイクロ波を受けてから効率よく受電できるようになるまでの応答時間が短いことが求められます。

【成果の内容】
<技術的背景と課題>
先の法整備に伴い、屋内無人環境下では受電回路のアンテナに1W(30dBm)近くの電力が入るようになり、より高機能で高性能なセンシングや計算処理が可能なセンサーノードの実現が期待されます。そのためには受電回路は高い電力変換効率が必要で、これはマイクロ波整流器とDC-DCコンバータの両方の電力変換効率が高くなければならないことを意味します。また、マイクロ波を受けてから高効率な電力変換ができるようになるまでの応答時間であるMaximum Power Point Tracking(MPPT)(用語(3))時間も100μs以下と極めて短くする必要があります。これはマイクロ波のビームが受電回路に入力される時間が細切れで、ビームが当たっている時間が最短数ms程度になることも想定されるためです。
これまでシリコンプロセスでICチップ化されているマイクロ波電力受電回路は、エネルギーハーベスティングを想定した1mW未満の入力電力で、DC-DCコンバータの入力電圧は5V未満が中心でした。受けられるマイクロ波の周波数はシリコンプロセスのマイクロ波整流器でも効率が比較的確保しやすい400MHzから900MHz帯と低いものが多く、そのためにアンテナサイズが10cmを超えるほど大きく、今回想定している小型センサーのノードへの無線電力伝送用途には適していませんでした。周波数が5.8GHz帯であればアンテナのサイズは2から3cmと十分小さくなりますが、シリコンプロセスのマイクロ波整流器ではシリコン基板が高損失で効率が低いため、主に個別半導体部品のショットキーバリアダイオード(SBD)とマイクロストリップ線路による分布定数回路で構成されたものが使用されていました。そのため今度は回路サイズが大きく、集積化が困難でした。
また、整流器の高効率化には同じ出力電力でも整流器の出力インピーダンスを高くして出力電圧を高くすることが望ましく、整流器の降伏電圧付近(本研究では15V)を出力しながらDC-DCコンバータへ入力する必要があります。このため、マイクロ波受電用途向けのシリコンIC DC-DCコンバータはこれまでより高い入力電圧に対応する必要があります。ここで、単純に高入力電圧に対応するDC-DCコンバータは太陽光発電向けなどありますが、応答時間(MPPT時間)が数100μsから数msと長い課題がありました。MPPT時間が短い方式としてはFractional Open Circuit Voltage(FOCV)法(用語(4))が良く知られています。しかし、この手法はマイクロ波整流器の開放端電圧VOCを直接取得する手法であり、電力変換効率が最も高い降伏電圧付近で動作しているマイクロ波整流器をこの手法で開放すると回路が破損してしまいます。このため、マイクロ波整流器を開放せずにVOCを高速に予測する回路を新たに開発しました。