「研究紹介2022」英語版デジタルパンフ用
56/76

OurresearchgrouphasdevelopedtheCompressionShearingMethodatRoomTemperature(COSME-RT)whereinmetalpowderissimultaneouslyloadedbyashearingforceandacompressivestressinairatroomtemperaturetoformaplate.Usually,heatisnecessaryforpowdermetallurgyformingprocessessuchashotpressing.Incontrast,theCOSME-RTprocessesthepowderatroomtemperature,sograincoarseningdoesnotoccur.Asaresult,theCOSME-RTyieldsgoodmechanicalproperties.Ti-6Al-4Viswidelyusedinbiomechanicalapplications,suchasdentalimplantsandintramedullarynails.However,sincevanadium(V)isdetrimentaltoorganismsandisalsoarareearthelement,V-freebiomaterialsaredesired.COSME-RTcanbeusedtoproducepureTiplatesthatexhibithighstrengthandnanometergrainsizes,makingthismaterialausefulalternativetothecommonbiomaterialTi-6Al-4V.Compression Shearing Method at Room Temperature (COSME-RT): (a)Step 1: metal powder is first placed between a stationary plate and a moving plate in the apparatus. A compressive stress is then applied to the moving plate and maintained during the forming process. (b)Step 2: Finally, a shearing load is added to the moving plate and displaced in the shearing direction.A thin plate is fabricated in this step.Development of Materials Useful in the Fields of Medicine and Welfare The tensile strength of the Ti thin plate formed by the Compression Shearing Method at Room Temperature (COSME-RT) was found to be 3 times larger than that for the rolled Ti.ThegraduatesofNakayamalaboratoryareworkingactivelyinautomotiveindustriesormanufacturesandmetalprocessingfactories.AssociateProfessorDr.Eng.Researcharea:Plasticworking(powdermetallurgy),Nondestructiveinspection00.050.10.1502004006008001000Nominal strainNominal stress ( MPa )Ti rolled material(ASTM grade 2)Ti thin plate by COSME-RT3 timesvvMoving plateMetal powderStationary plateCompressive stress : σN vvShearing load : PS(a) Step 1Compressive stress : σN Compressive stress : σN Compressive stress : σN (b) Step 2Noboru NakayamaIn the FutureMechanical SystemsEngineeringAfter GraduationWestudydeformationmechanismsofnanometre-scalematerialsbymoleculardynamics(MD)simulations.Itisdifficulttoexploresuchnanometre-scalematerialsexperimentallyduetotheirsize([nm]=10-9[m]).MDisoneofatomicsimulationmethodsandcansimulatethemovementofeachatominamaterial.UsingMD,weperformdeformationsimulationsofvariousmaterialssuchascarbonnanotubesandbulkmetallicglassestorevealthedeformationpropertiesinatomicscales.Inthislaboratory,westudynanometre-scalematerialsusingcomputation-simulations.Carbonnanotubesandbulkmetallicglassesarenewmaterialsdiscoveredrecently.Wehavetounderstandthepropertiesofmaterialsinordertousetheminvariousproducts.Ourstudiesrevealessentialdeformationpropertiesofthesenewmaterials.Basedonourstudies,theymaybeutilizedinvariousfields.Associate Professor2009, Dr. Eng., Kobe University, Graduate School of Science and Technology. Field of study: Molecular Dynamics simulation, Solid Mechanics.We can discuss deformation mechanisms in nanometre-scale materials by computer experiment. This figure shows torsional or bending deformation analysis of a defective carbon nanotube.Solid Mechanics on Nanometre-scale Materials using Atomic SimulationsComputation-simulations reveal complex changes of atomic structure in materials. This figure shows distributions of atomic strain under the indentation simulation on bulk metallic glasses.Graduatesareworkinginbroadfieldssuchasautoandelectronicsindustries.Inthislaboratory,studentsacquirethecomputation-simulationskillandtheknowledgeinsolidmaterials,whichwillbeveryusefulinyourfuturejobs.MasaomiNishimuraIn the FutureMechanical SystemsEngineeringAfter Graduation(a) Depth = 2nm(b) Depth = 4nm(c) Depth = 5nm50nmAtomic strain, γ 0.0 0.510nm14.413.415.4Atomic shear stress [GPa]0-5050Atomic bending stress [GPa]Lattice defect

元のページ  ../index.html#56

このブックを見る