高体温時の認知機能低下の機能的磁気共鳴画像法による 空間的神経ネットワーク評価

	奈良女子大学	芝	﨑		学
(共同研究者)	同志社大学	佐	伯		崇
	闰	若	原		卓
	Π	北	條	達	也
	奈良女子大学	中	\mathbb{H}	大	貴

Neural Network During Cognitive Task in the Heat Stressed Individuals

by

Manabu Shibasaki, Hiroki Nakata Nara Women's University Takashi Saeki, Taku Wakahara, Tatsuya Hojo Doshisha University

ABSTRACT

Hyperthermia-induced central fatigue impairs exercise performance and cognitive function. We evaluated the effect of hyperthermia on cognitive function using factional magnetic resonance imaging (fMRI). Eighteen healthy individuals performed two visual cognitive tasks (Go/No-go task and Flanker task in a random order) before (i.e. normothermia) and during heat stress. External canal temperature during heat stress was increased by 1.1°C from the normothermic condition. Reaction time of each task was shortened during heat stress, but the error rate was not changed. We observed broad activated brain regions, including the dorsolateral and ventrolateral prefrontal cortices, and motor-related areas such as supplementary motor area and premotor area during heat stress rather than during normothermia. These results suggest that heat stress

デサントスポーツ科学 Vol.39

increases the load of neural activity during performing cognitive tasks, relative to the normothermia.

要 旨

暑熱環境下運動時には高体温による中枢性疲労 によって運動パフォーマンスが低下する. 同様に 認知機能が低下することが報告されている.本 研究では機能的磁気共鳴画像法(fMRI)を用い て, 暑熱負荷中の認知機能テスト時の空間的神経 ネットワークを評価した. 18名の健康な若年者 が参加し、暑熱負荷前および外耳道温が1.1℃上 昇した後に、2種類の認知機能テスト(Go/No-go 課題および Flanker 課題)を MRI 室内で実施し, 反応時間および神経活動領域を測定した、反応時 間はいずれの課題においても暑熱負荷によって短 縮したがエラー率に暑熱による影響はほとんど認 められなかった。脳活動部位は、両課題とも暑熱 負荷によって補足運動野および運動前野等の運動 関連領域,背外側前頭前野が活発化し,Flanker 課題では視覚刺激の認知処理に関与する視覚野と 側頭連合野の活動が高まった. これらの結果は同 じ課題を遂行する場合であっても、 暑熱負荷に よって脳活動への負担が高まったことを示唆する ものである。

緒言

暑熱環境下における身体活動時は,体温が過度 に上昇しやすく,スポーツパフォーマンスが低下 することが知られている.パフォーマンスの低下 には心肺機能の制限だけでなく,中枢性疲労によ る筋力発揮が低下することも影響することが報告 されている^{1,2)}.後者の高体温による中枢性疲労 は運動野からのドライブが低下することを意味し ているが,おそらく中枢性疲労は高次機能全般の 活動にも影響していることが考えられる.

ヒトの高次脳機能を評価する方法は、いくつか の計測方法があり、それぞれに特徴がある、脳に 刺激が入力されると、脳の神経活動が活発化す る(一次信号). それに伴い、エネルギーを産生 するために糖代謝や酸素代謝といった代謝活動 が起こる(二次信号).代謝活動により産生され た糖や酸素は血液を介して脳へと運搬され、局 所脳血流が増大する (三次信号). この一連の流 れを Neurovascular coupling というが³⁾, 非侵襲 的に脳機能を評価する方法は、一次信号である神 経活動電位の変化をとらえるものと、三次信号で ある血流の変化をとらえるものの2種類に大別さ れる。前者の代表的な測定装置は脳波計や脳磁 場計測器であり、後者の代表的なものは機能的 磁気共鳴画像装置 (functional magnetic resonance imaging: fMRI) である.

近年,我々は脳波事象関連電位を用いて,高体 温による中枢性疲労は筋力発揮だけでなく,集中 力や判断力といった認知機能にも影響することを 明らかにした⁴⁶⁾. 脳波は脳の一次信号である神 経活動をとらえているため,ミリ秒単位の時間的 分解能に優れているという特徴があるが,ヒトの 研究では表面電極を用いるため, 脳脊髄液で信号 が拡張し,頭蓋骨などで減衰することから,脳の 電気活動の発生源を正確に推定することは困難で ある³⁾.

そこで本研究では、ミリメートル単位の空間分 解能に優れた*f*MRIを用いて空間的脳機能評価を 行うことを目的とした.*f*MRI は神経活動による 血流量の変化、および酸素代謝の変化を用いて脳 活動を検出する方法である.一般的に、ブロック デザインやイベントデザインといった手法で負荷 を与え、脳活動を評価するが、本研究では暑熱負 荷を与えるために時間的な制約があるためブロッ クデザインを用いた.課題ブロックの脳活動を ベースラインと比較することで,課題遂行時の脳 の活動領域を検出した.

1. 研究方法

18名の若年被験者が実験に参加した.被験 者の年齢,体重,身長は22±1歳,60±13kg, 167±8cmであった.神経生理学的あるいは精神 的既往歴があるものはいなかった.実験開始前に, 被験者に実験のプロトコールと危険性について説 明し,その後インフォームドコンセントを得た. 本研究は奈良女子大学および同志社大学倫理委員 会によって承認されている.

1.1 実験手順

暑熱負荷には水循環服を用い。 被験者は MRI 室内でも水循環服を着用して体温制御下で本実験 を遂行した.実験当日,被験者は実験室に到着す る2時間前までには軽食を摂取するように指示さ れた.実験前に実験概要を説明した後、認知課題 である Go/No-go 課題と Flanker 課題の説明を受 け、いずれも数回の練習を実施した、また、眼鏡 またはコンタクトレンズを使用している被験者に 対しては, MRI 用眼鏡 (Kiyohara 社製) の度数 を調節し、装着した、被験者は金属類がない下着 の上にTシャツ,ショートパンツおよびソック スを着用した上に水循環服(Med-Eng 社製)を 着用した、水循環スーツは頭、顔、手首より遠位、 足首より遠位を除く全身を覆い、平常体温状態 を維持するために、33℃の水をスーツに循環させ た. 被験者は MRI 室に入室する前に, MRI 入室 前チェックリストを記入し, MRI 室内の禁忌事 項の最終確認を行った後, MRI 室内に移動した. 仰臥位で安静にし,頭部の位置決めを行い(約3 分間), 解剖画像を撮影した. その後, Go/No-go 課題, Flanker 課題をそれぞれ6分間行った。両

課題の順序はランダムに実施した. その後, 速や かに MRI 室前室に移動し、リクライニングチェ アに座った.外耳道温測定用の温度センサー(ニ プロ社製CEサーモ)を装着し、皮膚温を測定す るために6箇所(胸.腹部.背中上部.腰.大 腿, 下腿) にT型熱電対を貼付した. 左手首に 簡易血圧計(タニタ社製 BP-210)を装着した. 水循環服と密着するよう伸縮性ネットやベルトを 装着し, 短時間で体温を上昇させるため, 熱を逃 がさないように上下のウインドブレーカーを被験 者に着せ、上から毛布をかけた.外耳道温、皮 後、水循環スーツ内に50℃の温水を循環させた。 体温測定ができない MRI 室内で体温が過剰に上 昇しないように、外耳道温が暑熱負荷前の値より ~0.9℃上昇した時点で、体温が定常状態になる ように水温と水流量を調節した。体温レベルが安 定していることを確認した後,外耳道温,皮膚温, および簡易血圧計を外し、被験者は補助者ととも に MRI 室内に移動した. 仰臥位で安静にし, 頭 部の位置決めを行い(約3分間), Go/No-go 課題, Flanker 課題をそれぞれ6分間行った. 認知課題 終了後、速やかに MRI 室前室に移動し、リクラ イニングチェアに座った後、すぐに外耳道温測定 用の温度センサーおよび簡易血圧計を装着した. 外耳道温, 心拍数および血圧を測定した後, 水循 環服に25℃の水を循環し、身体を冷却した.

1. 2 認知課題

本実験では視覚刺激による Go/No-go 課題およ び Flanker 課題を実施した.両課題の順序はラン ダムにし,実験を通して,Go/No-go 課題を先に 行った被験者の人数と Flanker 課題を先に行った 被験者の人数が同数になるよう設定した.本研 究では,安静 30 秒,課題 30 秒を 6 回繰り返す ブロックデザインを用いた.それぞれの画像表 示は 100 ms で,3 秒に1 回,刺激画像が表示さ れ、それ以外は安静時と同じく黒い画面表示とし た. Go/No-go 課題では画面に青丸が呈示された 場合. できる限り速く右手第Ⅱ指でボタン押し を行い(Go 試行).赤丸が呈示された場合はボタ ン押しを行わないよう(No-go 試行)被験者に教 示した. Flanker 課題では、画面に5つの矢印を 呈示し、標的刺激となる中央の矢印が指す方向と は反対のボタンを押すよう被験者に教示した(不 適合条件: incompatible). Flanker 課題では、刺 激は中央に呈示される矢印と両側に呈示される矢 印の指す方向の関係性から一致刺激 (congruent), 不一致刺激 (incongruent) に分類される。加えて 左右があるので、課題は左の一致課題 (Lcong)、 不一致課題 (Lincong), 右の一致課題 (Rcong), 不一致課題 (Rincong) の4 種類をランダムに呈 示し,課題を実施した.ボタン押しは,左右の第 II 指で行うよう指示した。

1. 3 MRI 記録

核磁気共鳴画像は同志社大学にある MRI (HITACHI 社製 EchelonVega, 1.5 T)を使用した. 前述のように暑熱負荷前後にそれぞれ撮影を行った.

EPI (Echo Planar Imaging) 画像は以下のパラ メーターを用い,取得した.

(TR: 3000 ms; TE: 50ms; FOV: 25.6 cm \times 25.6 cm; flip angle: 90°; slice thickness: 5 mm; 25 slice)

解剖画像のパラメーターは以下の通りである.

(TR: 3000 ms; TE: 50ms; FOV: 25.6 cm \times 25.6 cm; flip angle: 90°; slice thickness: 1mm; no gap; 200slice)

被験者は頭部が動かないよう固定した状態で, fMRIのガントリーに頭部から仰臥位の姿勢で 入った.実験中は動かないよう教示した.

外耳道温は安静時の MRI 撮影後,暑熱負荷前 にプローブ(ニプロ社製 CEサーモ 耳温プロー ブ)を装着し,暑熱負荷時に連続測定した.皮膚 温は安静時の MRI 撮影後,暑熱負荷前に T 型熱 デサントスポーツ科学 Vol. 39 電対を被験者に前述の6箇所貼り付け,暑熱負荷 時に測定を行った.T型熱電対を体表面積比率で 接続し,アナログ出力付温度計測器(ANRITSU 社製 TM-6143)に平均皮膚温として入力した. 体温データはいずれもデータロガー(BIOPAC社 製,MP150)を介してパーソナルコンピューター (富士通社製 LIFEBOOK A573/G)に取り込み, 演算処理(サンプリング周波数20Hz,20秒平均) を行った.心拍数および血圧は自動血圧測定装置 (タニタ社製,BP-210)を用いて,左手首で測定 した.いずれも暑熱負荷の際,5分ごとに測定を 行い,パーソナルコンピューター(SONY 社製, SVT11119FJS)に記録した.また,測定した収縮 期血圧,拡張期血圧から平均動脈圧を算出した.

1. 4 データ収集と分析

最初の10枚のfMRI 画像は磁場が不安定な ため、解析から除去し、110枚の解析を行った. fMRI によって得られたデータは二次元断層画像 であり、まずその画像をコンピューター上で三 次元画像に変換した。解析は MATLAB 言語で動 作する spm12 (Statistical Parametric Mapping) を 用いた.まず得られた三次元画像に対して配置計 算 (切り直し・動き補正 = Realign, Slice timing), 標準化 (Coregister, Normalization),空間平滑化 (Smoothing) を施した.配置計算の結果,試行中 の頭部のずれが 2mm を超えるものはなかった.

統計的分析を2つのレベルで行った.lstレベ ルの解析では general linear model を用いて,被 験者ごとに暑熱負荷後の課題から安静の課題を差 分し,各条件で特異的に活動が見られた脳部位 を算定した.2ndレベルの解析では被験者全体で 計算した.グループ解析のため各被験者の脳を MNI 系から Talairach 系の標準脳にあてはめるよ うに変換した.白質で有意な活動が検出された場 合,結果から除去した.暑熱負荷後の課題から安 静時の課題を差分し,各条件で特異的に活動が見 -88-

られた脳部位を算定した. 統計の閾値は p < 0.005 (uncorrected) とした.

Go/No-go 課題, Flanker 課題において, モニ ターに画像が表示されてからボタンを押すまで の時間を反応時間とした.反応が 800ms 以上 の試行,およびボタンを押せなかった試行を Omission error,間違えてボタンを押した試行を Commission error として,エラー率を算出した. また,反応時間が 800ms を超えたものは平均す るデータから除去した.

MRI データはすべて平均 ± 標準偏差で表記し た. 外耳道温, 心拍数, 平均動脈圧は時間 (pre-Heat, pre-fMRI, post-fMRI) を要因とする繰り返 しのある一元配置分散分析を行った。皮膚温およ び Go/No-go 課題における反応時間とエラー率は 時間(暑熱負荷前:pre,暑熱負荷後:post)を 要因とする繰り返しのある一元配置分散分析を. Flanker 課題における反応時間,エラー率は,刺 激 (Lcong, Lincong, Rcong, Rincong) と時間 (暑熱負荷前:pre, 暑熱負荷後:post)を要因と する繰り返しのある二元配置分散分析を行った. 分散分析に際し、Mauchlyの球面性を検討し、球 面性が仮定できなかった場合には, Greenhouse-Geisser のイプシロン (ϵ) を用いて, 自由度と 有意確率を再計算した. Post-hoc には Student-Newman-Keuls を用いた. Sigma Plot (Ver.12.5) を用い、いずれも有意差水準の判定は5%未満と した.

2. 研究結果

暑熱負荷によって皮膚温は上昇し(34.2±0.5℃ to 39.4±0.3℃, P<0.01),外耳道温は安静時より も 1.14±0.12℃上昇し, post-*f* MRI でも維持され た(1.12±0.30℃, both P<0.01 from the rest). 心 拍数および平均血圧は,暑熱負荷によってそれぞ れ増加および低下し(44±12bpm, 17±9mmHg, both P<0.01),心拍数は post -*f* MRI で少し上昇し た (55±16bpm, P<0.01) が平均血圧は維持され た (16±10mmHg).

Go/No-go 課題時では反応時間は暑熱負荷時に 短縮したが (320±30ms to 297±26ms, P<0.01), エラー率に有意差は認められなかった (P=0.459). Flanker 課題では反応時間において,刺激と時 間の主効果が認められ,暑熱負荷時に短縮した (Lcong; 399±45ms to 376±45ms, Lincong; 449± 58ms to 428±62ms, Rcong; 413±49ms to 386± 50ms, Rincong; 439±56ms to 416±62ms). エラー 率に関しては暑熱負荷によって全体の平均値は増 加したが, Go/No-go 課題, Flanker 課題ともに統 計的な有意差は認められなかった.

2. 1 Go/No-go 課題

暑熱負荷前(図1上)では,左脳半球前頭葉 の上前頭回(Brodmann's area: BA9),下前頭回 (BA9),中心前回(BA6),頭頂葉の下頭頂小葉 (BA40),縁上回(BA40),中心後回(BA2,43), 辺縁系の前帯状回(BA24),帯状回(BA24,31, 32)で,右脳半球前頭葉の上前頭回(BA6),下 前頭回(BA9),中前頭回(BA6,9),内側前頭回 (BA8,9,32),帯状回(BA32),頭頂葉の下頭頂 小葉(BA40),縁上回(BA32),頭頂葉の下頭頂 小葉(BA40),縁上回(BA40),角回(BA39), 辺縁系の帯状回(BA24),島皮質(BA13),およ び大脳基底核で活動がみられた.

暑熱負荷後(図1下)では、左脳半球前頭葉 の上前頭回(BA6),下前頭回(BA9,47),中前 頭回(BA6,8,10),中心前回(BA4,6),内側前 頭回(BA8),帯状回(BA32),頭頂葉の上頭頂 小葉(BA7),下頭頂小葉(BA39,40),縁上回 (BA40),側頭葉の上側頭回(BA13,22),視床, 大脳基底核,および小脳で,右脳半球前頭葉の上 前頭回(BA6,8,10),下前頭回(BA46,47),中 前頭回(BA6,8,9,10),内側前頭回(BA9),頭 頂葉の下頭頂小葉(BA39,40),縁上回(BA40), 中心後回(BA2),側頭葉の上側頭回(BA22), 中側頭回 (BA21,39),縁上回 (BA40),辺縁系 の前帯状回 (BA32),視床,脳基底核,および小 脳で活動がみられた.

 \boxtimes 1 Group activation map showing activated brain regions during Go/No-go trials in normothermia (A: top panel) and during heat stress (B: bottom panel) .

2. 2 Flanker 課題

暑熱負荷前 (図2上) では, 左脳半球前頭葉 の上前頭回 (BA6), 中前頭回 (BA6), 内側前頭 回 (BA6, 32), 帯状回 (BA32), 頭頂葉の上頭頂 小葉 (BA7), 下頭頂小葉 (BA40), 中心後回 (BA2), 楔前部 (BA7), 小脳で, 右脳半球前頭葉の上前 頭回 (BA6), 下前頭回 (BA44), 中前頭回 (BA6, 9), 内側前頭回 (BA6), 中心前回 (BA9), 帯状 回 (BA32), 頭頂葉の下頭頂小葉 (BA40), 中心 後回 (BA40), 楔前部 (BA7, 39), 縁上回 (BA40), 辺縁系の帯状回 (BA24), 視床, および小脳で活 動がみられた.

暑熱負荷後(図2下)では,左脳半球前頭葉 の上前頭回(BA6),下前頭回(BA45),中前頭 回(BA6,9,10),中心前回(BA44),頭頂葉の下 頭頂小葉(BA40),中心後回(BA2,3),楔前部 (BA31),後頭葉の紡錘状回(BA19),側頭葉の 上側頭回(BA22),辺縁系の前帯状回(BA32), 半球前頭葉の下前頭回 (BA9),中前頭回 (BA6, 8,9,46),内側前頭回 (BA32),頭頂葉の下頭頂 小葉 (BA40),中心後回 (BA2),後頭葉の下側 頭回 (BA37),舌状回 (BA18),側頭葉の上側頭 回 (BA13,22),中側頭回 (BA21,22),紡錘状回 (BA37),辺縁系の帯状回 (BA23),および小脳 で活動がみられた.

島皮質、視床、大脳基底核、および小脳で、右脳

 \boxtimes 2 Group activation map showing activated brain regions during Flanker trials in normothermia (A: top panel) and during heat stress (B: bottom panel)

2. 3 課題内比較

いずれの課題においても暑熱後の方が広範囲に 強く活動がみられたことから,暑熱前後の差分(図 3)を算出した.Go/No-go課題(図3上)では, 左脳半球前頭葉の上前頭回(BA6,8,10),中前頭 回(BA6,8,9),中心前回(BA6,9),内側前頭回 (BA10),頭頂葉の下頭頂小葉(BA7),楔前部 (BA19),後頭葉の下頭頂小葉(BA7),楔前部 (BA19),後頭葉の下後頭回(BA17,18),側頭葉 の上側頭回(BA22,38),中側頭回(BA21),辺 縁系の前帯状回(BA25),後帯状回(BA29),海 馬傍回,視床,大脳基底核,および小脳で,右脳 半球前頭葉の上前頭回(BA6),中前頭回(BA8, 9),中心前回(BA6),内側前頭回(BA10),頭 頂葉の楔前部 (BA7, 19), 後頭葉の楔部 (BA18), 側頭葉の上側頭回 (BA22), 辺縁系の前帯状回 (BA32),後帯状回 (BA29),海馬傍回,視床, 大脳基底核,および小脳で,暑熱負荷時の方が大 きな活動が認められた.

Flanker 課題でも Go/No-go 課題と同様に暑熱 負荷後の方が広範囲に強く活動が認められた(図 3下). 左脳半球前頭葉の上前頭回(BA6.8.10). 下前頭回 (BA45,47), 中前頭回 (BA8,9), 中 心前回(BA6,43),内側前頭回(BA9),頭頂葉 の下頭頂小葉 (BA40), 楔前部 (BA7), 縁上回 (BA40). 後頭葉の下後頭回(BA18). 中後頭回 (BA19), 紡錘状回 (BA19), 舌状回 (BA18), 楔部 (BA19), 側頭葉の上側頭回 (BA22, 38, 41), 中側頭回 (BA21), 横側頭回 (BA42), 紡 錘状回 (BA37),辺縁系の帯状回 (BA23),中心 後回(BA23, 29)。島皮質、および大脳基底核で、 右脳半球前頭葉の上前頭回(BA6,10),下前頭回 (BA45), 中前頭回(BA6,8,9), 中心前回(BA6, 9), 内側前頭回 (BA6, 9, 10), 中心傍小葉 (BA 31), 頭頂葉の楔前部(BA19, 31), 後頭葉の下後 頭回(BA19),中後頭回(BA18),紡錘状回(BA19).

 $\boxtimes 3$ Subtraction images from heat stress to normothermia in the Go/No-go trials (A: top panel) and in the Flanker trials (B: bottom panel)

舌状回 (BA19), 楔部 (BA18), 側頭葉の上側頭 回 (BA22, 38, 39), 中側頭回 (BA21, 39), 辺縁 系の帯状回 (BA31), 中心後回 (BA30), 島皮質, および大脳基底核で大きな活動が認められた.

2. 4 課題間比較

Go/No-go 課題と Flanker 課題で共通する領域 を抽出すると、暑熱負荷前では左脳半球前頭葉の 中前頭回(BA9),内側前頭回(BA9),頭頂葉の 下頭頂小葉 (BA43), 中心後回 (BA5), 楔前部 (BA10),小脳,右半球前頭葉の上前頭回 (BA9), 中前頭回(BA9,12).帯状回(BA35).頭頂葉の 下頭頂小葉 (BA43), 楔前部 (BA10), 角回 (BA42) であったが、暑熱負荷後は左脳半球前頭葉の上前 頭回 (BA9), 中前頭回 (BA9, 12, 13), 中心前回 (BA12),帯状回 (BA35),頭頂葉の上頭頂小葉 (BA10), 下頭頂小葉 (BA43), 中心後回 (BA2, 3), 縁上回 (BA43), 島皮質, 視床, 大脳基底核, 右脳半球前頭葉の上前頭回(BA9,11),下前頭回 (BA50), 中前頭回(BA6, 8, 9), 頭頂葉の下頭頂 小葉 (BA43), 縁上回 (BA43), 側頭葉の上側頭 回 (BA25), 中側頭回 (BA24), 後頭葉の中側頭

 \boxtimes 4 Brain regions commonly activated in the Go/No-go and Flanker trialsduring heat stress (A: top panel) and before heat stress (B: bottom panel)

また、Flanker 課題でより大きな活動の変化が みられたことより、Flanker 課題から Go/No-go 課題の差分を評価すると(図5),暑熱後では左 半球前頭葉の中前頭回(BA8),頭頂葉の上頭 頂小葉(BA9),下頭頂小葉(BA42),中心後回 (BA5,7,42),楔前部(BA9,21),側頭葉の紡錘 状回(BA39),右半球前頭葉の中心前回(BA8), 頭頂葉の上頭頂小葉(BA9),下頭頂小葉(BA42), 中心後回(BA4,5,9),楔前部(BA9),側頭葉の 上側頭回(BA24),上後頭回(BA21),島皮質で 高い活動を示した.

☑ 5 Subtraction images between Go/No-go trials and Flanker trials during heat stress (A: Flanker minus Go/ No-go, B: Go/No-go minus Flanker)

3. 考察

本研究では、外耳道温を安静時よりも1.1℃上 昇させるマイルドな暑熱負荷を行った. 認知課 題には単純なボタン押し課題である Go/No-go 課 題,少し複雑な Flanker 課題の2種類を実施した. Go/No-go 課題は運動遂行過程および運動抑制過 程を評価するのに適した試行である. 我々はこれ までに脳波事象関連電位を用いて,高体温による デサントスポーツ科学 Vol. 39

これらの処理過程を評価してきた. 脳波事象関連 電位による評価は一次信号である神経活動を反映 するため、時間分解能が高いことから運動遂行と 運動抑制を別途に比較検討できたが、MRI では 三次信号である血中の酸素化動態を評価している 3) 概説すると、酸素は赤血球のヘモグロビンに より神経細胞へと送られる。神経細胞に酸素を供 給したヘモグロビンは脱酸素化ヘモグロビンとな る.酸素化ヘモグロビンは反磁性であるのに対し. 脱酸素化ヘモグロビンは常磁性であるため、もと もとの磁場の不均一をもたらし、NMR(核磁気 共鳴:nuclear magnetic resonance)信号が減少する. 神経活動が増加すると、神経活動亢進部位への酸 素供給を増加させるために、血管が拡張し、脳血 流量が増加する. つまり神経活動亢進部位におけ る酸素化ヘモグロビン濃度が相対的に増加し、脱 酸素化ヘモグロビンの濃度が減少する (BOLD 効 果). その結果,磁場の不均一性が減少し,NMR 信号が増加する. fMRI では、このような脳活動 亢進部位と亢進していない部位の NMR 信号の差 異を測定することで脳活動をとらえている.

本研究では暑熱負荷を用いているにも関わらず MRI 室内では温度計測ができないことから時間 的制約があり,イベントデザインではなく,ブロッ クデザインを用いた.そのため,運動遂行と運動 抑制を個別には比較できないため,イベントデ ザインを用いた先行研究の評価を参照する.Go/ No-go 課題に関連する神経ネットワークは,背外 側前頭前野,腹外側前頭前野,補足運動野,一次 感覚運動野,前帯状皮質,側頭頭頂接合部,側頭葉, 頭頂葉,視床を含むことが報告されている^{7,8)}. 特に,前頭前野は抑制機能の維持において重要な 役割を果たし⁹⁾,視覚刺激を用いた Go/No-go 課 題では,右側の前頭前野において強い No-go 反 応が見られることが知られている¹⁰⁾.

暑熱負荷前の安静時には背外側および腹外側 を含む前頭前野,運動前野,補足運動野,側頭

回,頭頂連合野,視床で活動がみられ,先行研究 と同様に、運動遂行過程および運動抑制過程に関 連する神経ネットワークの活動が認められた. ま た、本研究では上記の部位の他に、前帯状回、帯 状回でも活動が見られた.帯状回には情動領域と 認知領域があり、前帯状回背側部は、注意や運動 の選択に関係する認知領域である。認知領域は運 動関連領野と密接に連絡し、眼窩前頭前野、背外 側前頭前野からの情報を認知領域で受け、補足運 動野 – 運動野に送る. 前帯状回はワーキングメモ リの認知的な注意制御にも関係し、前帯状回が前 頭前野を制御する前頭葉の脳内ネットワークに支 えられていることが知られている¹¹⁾.本研究に おいてもこのネットワークが活発化したことが推 測される. さらに, 島皮質, 大脳基底核, 小脳に おいても活動がみられた. 島皮質は. 帯状回皮質 や、大脳基底核の尾状核や被殻を含む多数の神経 結合を持つため¹²⁾,本実験においても,このネッ トワークが活発化したためであると推測する.ま た、大脳基底核と小脳は運動野と連結し、運動遂 行過程に関わる¹³⁾.高体温時には、安静時の結 果に加え、より広範囲での神経活動が確認された (図1下),特に、背外側前頭前野,頭頂連合野, 上・中側頭回、運動前野、補足運動野、および小 脳において活動量の増大が見られた.本研究は、 事象関連型 fMRI ではなく、ブロックデザイン型 fMRI を用いたため、運動遂行、運動抑制、運動 準備、刺激に対する予期、注意等を含んだ神経活 動に加え、ボタン押しに関係する神経活動が記録 されている.背外側前頭前野は抑制反応 (No-go 反応),小脳は遂行反応(Go反応)時に活発化す ることが知られており^{9,12)},暑熱負荷によって 運動遂行過程、抑制過程いずれにおいても活動が 高まったことが示された. 脳波事象関連電位を用 いた先行研究で、抑制系の活動部位である前頭前 野は温度上昇による影響を受けやすい部位である 可能性が示唆された.また、運動に関連する領域

が活発化したことから,高体温時にはこれらの領 域により大きな神経負荷がかかることが示唆され た.

暑熱負荷により脳活動領域が大きくなった理由 として、暑熱負荷中の方が課題遂行の負荷がより 高まったことが考えられる。例えば、フランカー 課題を用いた先行研究では、矢印の向きが全て一 致する視覚刺激が呈示される Congruent 試行より も, 矢印が1箇所異なる視覚刺激が呈示される Incongruent 試行の方が、課題遂行が困難である が、その際の脳活動(VLPFC:腹外側前頭前野、 SMA: 補足運動野, 頭頂連合野) も Incongruent 試行の方が大きいことが報告されている¹⁴⁾.実 際に、本研究でも同様の傾向が認められた、すな わち、高体温時にはパフォーマンスを遂行するた めにより大きな努力度を要し、様々な脳領域にお ける課題遂行のための神経活動量が増大した可能 性が示唆された. また、本研究では高体温条件と して身体内部の温度が1.1℃上昇するように設定 した. このレベルの体温上昇によって脳血流が低 下することが我々を含め、多くの研究グループが 同様の報告をしている¹⁵⁾.前述のように BOLD 効果とは神経活動亢進部位における酸素化ヘモグ ロビン濃度が相対的に増加し. 脱酸素化ヘモグロ ビンの濃度が減少することで得られる. すなわち, 高体温によって相対的に全脳血流量が低下した場 合,検出力に違いが出る可能性があるため、活動 レベルとして単純に暑熱負荷前後で比較すること は過大評価する可能性があるが、領域はブロック デザインで得られた領域差であるため、活動領域 が増大しているか否かは妥当な検出であると考え られる.しかし,暑熱負荷中の脳血流の分布を測 定しないことにはこの問題は解決できない.

4. まとめ

本研究では*f*MRIを用いて暑熱負荷による認 知課題時の脳活動への影響を空間的に評価した. Go/No-go 課題および Flanker 課題とも暑熱負荷 によって補足運動野および運動前野等の運動関連 領域,背外側前頭前野が活発化し, Flanker 課題 では視覚刺激の認知処理に関与する視覚野と側頭 連合野の活動が高まった.これらの結果は同じ課 題を遂行する場合であっても,暑熱負荷によって 脳活動への負担が高まったことを示唆するもので ある.

謝 辞

本研究に対して助成を賜りました公益財団法人 石本記念デサントスポーツ科学振興財団に深く感 謝いたします.また,被験者としてご協力いただ きました被験者の皆様,計測にご協力を頂きまし た大城岬さん,長澤あずみさんに深く感謝いたし ます.

文 献

- Crandall C.G., Gonzalez-Alonso J., Cardiovascular function in the heat-stressed human, *Acta. Physiol.*, 199(4) :407-23(2010)
- Nybo L., Cycling in the heat: performance perspectives and cerebral challenges, *Scand. J. Med. Sci. Sports*, 20 (Suppl. 3) : 71–79(2010)
- 宮内哲.脳を測る-改訂 ヒトの脳機能の非侵襲 的測定-心理学評論,56(3)414-454(2013)
- 4) 芝崎学,難波真理,中田大貴.暑熱環境下における聴覚情報処理および高次認知機能の評価.デサントスポーツ科学. 37: 82-91 (2016)
- 5) Shibasaki M., Namba, M., Oshiro M., Crandall C.G., and Nakata H., The effects of elevations in internal temperature on event-related potentials during a single cognitive task in humans, *Am. J. Physiol. Regul. Integr. Comp. Physiol.*, **311**(1) : R33 – R38 (2016)
- 6) Shibasaki M., Namba, M., Oshiro M., Kakigi R.,

and Nakata H., Suppression of cognitive function in hyperthermia; From the viewpoint of executive and inhibitive cognitive processing, *Sci. Rep.*, **7**:43528 (2017)

- Nakata H., Sakamoto K., Ferretti A., Gianni Perrucci M., Del Gratta C., Kakigi R., Luca Romani G., Somato-motor inhibitory processing in humans: an event-related functional MRI study, *Neuroimage*, 39 (4):1858-1866(2008)
- 8) Nakata H., Sakamoto K., Ferretti A., Gianni Perrucci M., Del Gratta C., Kakigi R., Luca Romani G., Executive functions with different motor outputs in somatosensory Go/Nogo tasks: an event-related functional MRI study, *Brain Res. Bull.*, 77 (4) : 197-205 (2008)
- Herrmann M. J., Walter A., Ehlis A. C. & Fallgatter A. J., Cerebral oxygenation changes in the prefrontal cortex: effects of age and gender, *Neurobiol. Aging*, 27 (6) : 888-894 (2006)
- 10) Chikazoe J., Konishi S., Asari T., Jimura K., Miyashita Y., Activation of Right Inferior Frontal Gyrus during Response Inhibition across Response Modalities, J. Cog. Neurosci., 19(1): 69-80(2007)
- 予阪直行:ワーキングメモリと前頭葉機能-実行 系機能の個人差-認知神経科学,7(3):250-255 (2005)
- 12) Augustine, J. R., Circuitry and functional aspects of the insular lobe in primates including humans, *Brain Res. Rev.*, 22(3): 229-244(1996)
- 13) Ishikawa T., Tomatsu S., Tsunoda Y., Lee J., Hoffman D.S., Kakei S., Releasing Dentate Nucleus Cells from Purkinje Cell Inhibition Generates Output from the Cerebrocerebellum, *PLOS ONE*, 1-16 (2014)
- Hazeltine E., Poldrack R., Gabrieli J.D., Neural activation during response competition, J. Cogn. Neurosci., 12 (Suppl 2) : 118-29 (2000)
- 15) Bain A.R., Nybo L., Ainslie P.N., Cerebral Vascular Control and Metabolism in Heat Stress, *Compr. Physiol.*, 5:1345-1380 (2015)