–{•¶‚ÖƒXƒLƒbƒv

MB‘åŠwˆãŠw•”@•ªŽq•a‘ÔŠw‹³Žº

“Á”C‹³Žö@”Ñ“c@G”Ž@HEADLINE

@

Žå—v˜_•¶


œ Iida H, Iguchi S, Teramoto N, et al. Adequacy of a compartment model for CMRO2 quantitation using 15O-labeled oxygen and PET: a clearance measurement of 15O-radioactivity following intracarotid bolus injection of 15O-labeled oxyhemoglobin on Macaca fascicularis. Journal of Cerebral Blood Flow and Metabolism. 2014;34(9):1434-1439.
œIida H, Hayashi T, Eberl S, Saji H. Quantification in SPECT cardiac imaging. J Nucl Med. 2003;44(1):40-42.
œIida H, Tamura Y, Kitamura K, Bloomfield PM, Eberl S, Ono Y. Histochemical correlates of 15O-water-perfusable tissue fraction in experimental canine studies of old myocardial infarction. J Nucl Med. Oct 2000;41(10):1737-1745.
œIida H, Law I, Pakkenberg B, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison. Journal of Cerebral Blood Flow and Metabolism. 2000;20(8):1237-1251.
œIida H, Shoji Y, Sugawara S, et al. Design and Experimental validation of a Quantitative myocardial 201Tl SPECT System. IEEE Trans Nucl Sci. 1999;46(3):720-726.
œIida H, Rhodes CG, Araujo LI, et al. Noninvasive quantification of regional myocardial metabolic rate for oxygen by use of 15O2 inhalation and positron emission tomography. Theory, error analysis, and application in humans. Circulation. 15 1996;94(4):792-807.
œIida H, Akutsu T, Endo K, et al. A multicenter validation of regional cerebral blood flow quantitation using [123I]iodoamphetamine and single photon emission computed tomography. Journal of Cerebral Blood Flow and Metabolism. 1996;16(5):781-793.
œIida H, Takahashi A, Tamura Y, Ono Y, Lammertsma AA. Myocardial blood flow: comparison of oxygen-15-water bolus injection, slow infusion and oxygen-15-carbon dioxide slow inhalation. J Nucl Med. 1995;36(1):78-85.
œIida H, Bloomfield P, Miura S, Kanno I, Murakami M, Uemura K. Effect of real-time weighted integration system for rapid calculation of functional images in clinical positron emission tomography. IEEE T Med Imaging. 1995;14:115-121.
œIida H, Itoh H, Nakazawa M, et al. Quantitative mapping of regional cerebral blood flow using iodine-123-IMP and SPECT. J Nucl Med. 1994;35(12):2019-2030.
œIida H, Jones T, Miura S. Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. J Nucl Med. 1993;34(8):1333-1340.
œIida H, Jones T, Miura S. Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. J Nucl Med. 1993;34(8):1333-1340.
œIida H, Rhodes CG, de Silva R, et al. Myocardial tissue fraction--correction for partial volume effects and measure of tissue viability. J Nucl Med. 1991;32(11):2169-2175.
œIida H, Miura S, Kanno I, Murakami M, Takahashi K, Uemura K. Design and evaluation of headtome-IV, a whole-body positron emission tomograph. IEEE Trans Nucl Sci. 1989;37:1006-1110.
œIida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography. Journal of Cerebral Blood Flow and Metabolism. 1989;9(6):874-885.
œIida H, Kanno I, Takahashi A, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation. 1988;78(1):104-115.
œIida H, Higano S, Tomura N, et al. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O] water and dynamic positron emission tomography. Journal of Cerebral Blood Flow and Metabolism. 1988;8(2):285-288.
œIida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A simulation study of a method to reduce positron annihilation spread distributions using a strong magnetic field in positron emission tomography. IEEE Trans Nucl Sci. 1986;33:597-600.
œIida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H215O autoradiography and positron emission tomography with respect to the dispersion of the input function. Journal of Cerebral Blood Flow and Metabolism. 1986;6(5):536-545.
œIida H, Aoki Y, Hashimoto K, et al. Drastic changes of (p,t) analyzing powers for the isotopes 58,60,62,64Ni and marked incident-energy dependence of the analyzing powers as evidence for strong, sequential, two-step processes. Physical Review C. 1984;29:328-331.