令和3年度入学試験問題(後期日程)

数学

出題意図

問題 1	平面図形の取り扱いに関する力をみる。	
問題2	積分の基本的な力,及び値の評価に関する力をみる。	
問題3	複素平面の取り扱いに関する基礎的な力をみる。	
問題[4]	微分・積分の応用としての速度,加速度,道のりに関する理解と,三角関数を含む積分の計算力をみる。	
問題[5]	積分の基本的な計算力,及び論証力をみる。	

令和3年度入学試験問題

数学

注意事項

- 1. この問題冊子は試験開始の合図があるまで開いてはいけない。
- 2. 解答用紙は問題冊子とは別になっているので、解答はすべて解答用紙の指定されたところに記入すること。また、解答用紙は問題ごとに別になっているので、注意すること。
- 3. 受験番号を解答用紙の指定されたところへ必ず記入すること。決して氏名を書いてはいけない。
- 4. この問題冊子は持ち帰ること。

解答にあたっての注意事項

受験者は下の表にしたがって、志望学部学科の問題を解答すること。

学部	学科	解答する問題
理学部	全学科	1,2,3,4,5の5問
工学部	電子情報システム工学科 水環境・土木工学科 機械システム工学科 建築学科	1, 2, 3, 4の4問
繊維学部	全学科	1,2,3,4の4問

 θ を $0 < \theta < \frac{\pi}{2}$ をみたす実数とし, $s = \frac{2}{2\sin\theta + 1}$ とおく。

平面上の点 O, A, B は, $|\overrightarrow{OA}|=1$, $|\overrightarrow{OB}|=2$, $\angle AOB=2\theta$ をみたすとする。このとき,以下の問いに答えよ。

- (1) s < 1 をみたす θ の範囲を求めよ。
- (2) θ は (1) で求めた範囲を動くとする。さらに、線分 AB を (1-s):s に 内分する点を C、線分 OB の中点を D とし、線分 AD と 線分 OC の交 点を P とする。このとき、 $|\overrightarrow{PD}|$ は θ の値によらないことを示せ。

a,b を $1 \le a < b \le 5$ をみたす整数とする。区間 $a\pi \le x \le b\pi$ において、曲線 $y = \sqrt{x}\sin x$ と x 軸で囲まれた部分が、x 軸の周りに 1 回転してできる回転体の体積を V とする。このとき、 $V \ge 6\pi^2$ となるような組 (a,b) をすべて求めよ。

3 実数 θ は $0 < \theta < \pi$ をみたすとする。また、複素数平面上の 3 点 $A(\alpha)$, $B(\beta)$, $C(\gamma)$ は同一直線上にないとする。

点 $A(\alpha)$ を、点 $B(\beta)$ を中心として θ だけ回転した点を P 点 $B(\beta)$ を、点 $C(\gamma)$ を中心として θ だけ回転した点を Q 点 $C(\gamma)$ を、点 $A(\alpha)$ を中心として θ だけ回転した点を Q とおく。このとき、以下の問いに答えよ。

- (1) 3 点 P, Q, R が同一直線上にないとき, \triangle ABC の重心と \triangle PQR の重心は一致することを示せ。
- (2) i を虚数単位とし, $\alpha=3\sqrt{3}+2i$, $\beta=2-i$, $|\beta-\gamma|=2$, $\arg(\beta-\gamma)=\theta$ であるとする。 直線 PC と直線 QC が直交するとき, θ の値を求めよ。

4

座標平面上を運動する点 P の時刻 t における座標 (x,y) が

$$x = 2t + \sin(2t) - \cos^2 t$$
, $y = t - \frac{1}{2}\sin(2t) + 2\sin^2 t$

で表されるとき,以下の問いに答えよ。

- (1) 時刻 $t=\frac{\pi}{4}$ における点 P の速度と加速度を求めよ。
- (2) t=0 から $t=\pi$ までに点 P が動いた道のりを求めよ。

5 n を自然数とする。実数 x > 0 に対し、

$$\sin x = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{(2k-1)!} x^{2k-1} + \frac{(-1)^n}{(2n-1)!} \int_0^x (x-t)^{2n-1} \sin t \, dt$$

となることを示せ。