無限次元測度特論

お茶の水女子大学大学院 数理・情報科学専攻集中講義

平成17年1月31日~2月4日

講義の概要

N. Dunford and J. T. Schwartz [6], N. Dinculeanu [5], J. Diestel and J. J. Uhl, Jr. [3], さらには I. Kluvánek and G. Knowles [7] の名著を紐解けばわかるように、ベクトル測度の研究では、

- Radon-Nikodým の定理やマルチンゲール収束定理と Banach 空間の幾何的性質と の関係
- 連続関数空間から Banach 空間への作用素のベクトル測度による Riesz タイプの表現とその分類
- ベクトル測度の値域に関する問題
- スペクトル作用素の研究
- ベクトル測度の積測度の存在性とそれによる Banach 空間の分類

さらにはこれらの議論を展開するのに必要不可欠な

- スカラー値関数のベクトル測度にによる積分(Bartle-Dunford-Schwartz-Lewis 積分)
- ベクトル値関数のベクトル測度による Bartle の双線形ベクトル積分

などの問題に焦点が当てられてきた.

応用面に目を転じてみても、無限自由度をもつ制御系における最適制御問題や、量子場の理論におけるFeynman-Kac 形式の定式化などでベクトル測度が活躍している。特に、状態空間上で作用する連続線形作用素からなる半群と、観測手段を与えるスペクトル測度の両者によってその発展が記述される物理系の数学的考察と関連して、作用素値ベクトル測度の性質及びそれらによる積分が盛んに研究されている。

これら従来の研究は、個々のベクトル測度のもつ様々な性質を詳細に調べることに重点が置かれてきた。ところが最近になって、M. Dekiert [2] により正値測度や実測度に対する測度の弱収束の概念の自然な拡張としてベクトル測度の弱収束の概念が導入され以来、ベクトル測度一つ一つの持つ性質の解明だけでなく、ベクトル測度から成る空間の(ベクトル測度の弱収束に関する)位相的性質の解明が、ベクトル測度の研究領域の中に新たな興味ある研究対象を提示するようになってきている。

ベクトル測度の研究に対しては、"その理論は通常の測度論で、実数直線 $\mathbb R$ を Banach 空間 X に、絶対値 $|\cdot|$ をノルム $||\cdot||$ に置き換えただけではないか"という偏見がある。もちろんこのような単純な置き換えによって定式化される命題や証明手法があることは否定できない。しかし、われわれがこれから取り扱うのはこのような単純な抽象化で解決できる問題ではない。この講義で取り扱う題材は、実測度の場合と明らかに異なる(一般に困難な)状況が証明の中に出現する問題や、取る値の空間が Banach 空間のような無限次元空間であることにより本質的に生じる問題(例えば、ノルム位相と弱位相の違いに起因する問題)である。

第0章は「Banach 空間論・測度論からの準備」と題し、講義の中で引用される Banach 空間論及び測度論の重要な結果を、付随する定義も含めて解説する。また、受講生の便宜を考えて、付章「講義で参照される定理」でまとめておく。証明は例えば、[4,6]を見よ。

第1章は「ベクトル測度の定義と基本的性質」と題し、ベクトル測度の定義から始めて、 その全変動、半変動などの用語とその基本的な性質を準備する.

第2章「ベクトル測度の可算加法性 (Orlicz-Pettis の定理)」では、ベクトル測度の値の空間が無限次元であることにより生じる問題の一つとして、弱位相に関する可算加法性と

ノルム位相に関する可算加法性との間の関係を取り扱う.

第3章「Control measures の存在性 (Bartle-Dunford-Schwartz の定理)」では、ベクトル測度の理論を深化させるのに必要不可欠な control measure の存在性に関する Bartle-Dunford-Schwartz の定理について述べる。この定理は実測度全体からなる Banach 空間の部分集合の相対コンパクト性に関する深遠な結果の帰結として得られる。

第4章「その他の重要な定理」で紹介される定理は、ベクトル測度のみならず実測度に対しても重要かつ有益なものである。しかし、その証明は実測度の場合と同様に示せるか、あるいは実測度の場合の結果から簡単に導けるものであり、証明なしで結果を述べるにとどめる。

ベクトル測度の理論展開に際して重要な道具の一つである,スカラー値関数のベクトル測度による積分(Bartle-Dunford-Schwartz-Lewis 積分)は,第5章「Bartle-Dunford-Schwartz-Lewis 積分」で詳細に述べる.この積分理論の展開に際しては,すでに第3章で述べたベクトル測度に対する control measure が重要な役割を果たす.

第6章「ベクトル測度の正則性」では、位相空間上のベクトルに対して様々なタイプの 正則性を導入する. さらに、それらの正則性は対応する実測度の正則性で判定できること を示す.

この講義最後の章である第7章「弱コンパクト作用素の表現 (Riesz-Kakutani の定理の拡張)では、ベクトル測度の理論の作用素論への重要な貢献の一つである Bartle-Dunford-Schwartz の定理を紹介する。この定理はコンパクト空間 S 上の連続関数全体からなる Banach 空間 C(S) 上の有界線形汎関数の表現定理として有名な Riesz-Kakutani の定理の拡張であり、弱コンパクト作用素 $T:C(S)\to X$ が Banach 空間 X に値を取るベクトル測度で表現されることを主張している。この定理により、その性質が調べにくかった弱コンパクト作用素の解明が飛躍的に進展した。

最後になりましたが、今回の講義の機会を与えていただいたお茶の水女子大学教授・前田ミチエ先生に感謝の意を捧げる.

参考文献

- [1] R. G. Bartle, N. Dunford and J. T. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289–305.
- [2] M. Dekiert, Kompaktheit, Fortsetzbarkeit und Konvergenz von Vektormassen, Dissertation, University of Essen, 1991.
- [3] J. Diestel and J. J. Uhl, Jr., *Vector measures*, Amer. Math. Soc., Math. Surveys No. 15, Providence, R. I., 1977.
- [4] J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York, 1984.
- [5] N. Dinculeanu, Vector measures, Pergamon Press, Berlin, 1967.
- [6] N. Dunford and J. T. Schwartz, *Linear operators*, part I: general theory, John Wiley & Sons, 1957.
- [7] I. Kluvánek and G. Knowles, Vector measures and control systems, North-Holland, 1976.
- [8] D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157–165.

目 次

第0章	Banach 空間論・測度論からの準備	
第1章	ベクトル測度の定義と基本的性質	1
第2章	ベクトル測度の可算加法性 (Orlicz-Pettis の定理)	15
第3章	Control measures の存在性 (Bartle-Dunford-Schwartz の定理)	21
第4章	その他の重要な定理	29
第5章	Bartle-Dunford-Schwartz-Lewis 積分	33
第6章	ベクトル測度の正則性	53
第7章	弱コンパクト作用素の表現 (Riesz-Kakutani の定理の拡張)	61
付章	講義で参照される定理	

付章: 講義で参照される定理

測度論からの準備

● 写像の可測性

- (1) (Ω, \mathcal{A}) , (Φ, \mathcal{B}) は可測空間, $\xi : \Omega \to \Phi$ は写像とする. このとき, ξ が $(\mathcal{A}, \mathcal{B})$ -可測 $\stackrel{\triangle}{\Longleftrightarrow} \forall B \in \mathcal{B}$ に対して $\xi^{-1}(B) \in \mathcal{A}$.
- (2) $f:\Omega\to\mathbb{R}$ は実数値関数とする.このとき,f が Borel 可測 \iff $\forall a\in\mathbb{R}$ に対して $\{\omega\in\Omega:f(\omega)< a\}\in\mathcal{A}$.

• 集合族によって生成される σ -集合体.

 Ω は空でない集合, \mathcal{D} は Ω の部分集合からなる空でない集合族とする.このとき, \mathcal{D} を含む最小の σ -集合体がただ一つ存在する.それを $\sigma(\mathcal{D})$ とかき, \mathcal{D} によって**生成される\sigma-**集合体という.実際, $\sigma(\mathcal{D})$ は \mathcal{D} を含むすべての σ -集合体の共通部分として与えられる.

● 可測性の判定.

 (Ω, A) , (Φ, B) は可測空間, B_0 は B の部分集合族で $\sigma(B_0) = B$ とする. $\xi: \Omega \to \Phi$ は 写像とする. このとき, 以下が成り立つ:

- (1) $\sigma(\xi^{-1}(\mathcal{B}_0)) = \xi^{-1}(\mathcal{B}).$
- (2) ξ が (A, \mathcal{B}) -可測 $\iff \forall B_0 \in \mathcal{B}_0$ に対して $\xi^{-1}(B_0) \in A$.

• Dynkin System Theorem.

 Ω は空でない集合で、 Ω の部分集合からなる集合族 $\mathcal D$ は $\mathbf D$ ynkin system とする. すなわち次の3つの条件を満たす:

- (a) $\Omega \in \mathcal{D}$.
- (b) $A, B \in \mathcal{D}$ \mathcal{O} , $B \subset A$ \mathcal{O} \mathcal
- (c) $A_1, A_2, \dots \in \mathcal{D}$ $\forall A_n \uparrow A \land b \not \exists A \in \mathcal{D}$.

さらに、 \mathcal{E} は Ω の部分集合からなる集合族で有限積に関して閉じており、 $\mathcal{E} \subset \mathcal{D}$ であるとする. このとき、 $\sigma(\mathcal{E}) \subset \mathcal{D}$ となる.

● 写像族によって生成される σ-集合体.

 Ω は空でない集合、 (Φ, \mathcal{B}) は可測空間、 Γ は Ω から Φ への写像からなる空でない族とする.このとき、 Γ に属する写像をすべて \mathcal{B} に関して可測にする最小の σ -集合体が Ω 上にただ一つ存在する.それを $\sigma(\Gamma)$ とかき、 Γ によって生成される σ -集合体という.実際、 $\sigma(\Gamma)$ は

$$\sigma(\Gamma) = \sigma(\{\xi^{-1}(B) : \xi \in \Gamma, B \in \mathcal{B}\})$$

で与えられる. この σ-集合体は次の性質をもつ:

となる. さらに

$$|\gamma|(S) = ||f||_1 := \int_S |f| d\lambda$$

が成り立つ.

- Vitali-Hahn-Saks Theorem. (Ω, A) は可測空間, $\{\gamma_n\} \subset \operatorname{ca}(A)$, $\lambda \in \operatorname{ca}^+(A)$ で
 - (i) 各 γ_n は λ-連続
 - (ii) 各 $E \in \mathcal{A}$ に対して $\lim_{n\to\infty} \gamma_n(E) = \gamma(E)$ が存在

と仮定する.このとき, $\{\gamma_n\}$ は一様に λ -連続 (i.e., $\forall \varepsilon > 0$, $\exists \delta > 0$; $E \in A$ で $\lambda(E) < \delta$ ならば $|\gamma_n(E)| < \varepsilon$ for $n=1,2,\ldots$) で, γ は λ -連続かつ可算加法的となる.

- Nikodým's Convergence Theorem. (Ω, A) は可測空間, $\{\lambda_n\} \subset \operatorname{ca}(A)$ で,各 $E \in A$ に対して $\lim_{n\to\infty} \lambda_n(E) = \lambda(E)$ が存在すると仮定する.このとき, $\{\lambda_n\}$ は一様に可算加法的で, $\lambda \in \operatorname{ca}(A)$ となる.
- Nikodým Boundedness Theorem. (Ω, A) は可測空間, $M \subset \operatorname{ca}(A)$ とする. 各 $E \in A$ に対して $\sup_{\lambda \in M} |\lambda(E)| < \infty$ ならば $\sup_{\lambda \in M} |\lambda|(\Omega) < \infty$.

距離空間論からの準備

● 点と集合の距離.

(S,d) は距離空間、 $A \subset S$ とする. このとき、点 S と集合 A の距離を

$$d(s,A) := \inf\{d(s,t) : t \in A\}$$

で定義する. この距離は次の性質をもつ:

(1) 不等式

$$|d(s,A)-d(t,A)| \leq d(s,t)$$
 for all $s,t \in S$

を満たす. それゆえ, 写像 $s \in S \mapsto d(s, A)$ は一様連続.

- (2) A が閉集合のとき、 $s \in A \iff d(s,A) = 0$.
- 距離空間におけるコンパクト性判定条件.
 - (S,d) は距離空間, $A \subset S$ とする. このとき, 次の条件は同値:
 - (a) A は相対コンパクト, i.e., \bar{A} がコンパクト.
 - (b) \bar{A} は可算コンパクト, i.e., \bar{A} の任意の可算開被覆は有限部分被覆をもつ.
 - (c) A は相対点列コンパクト, i.e., A の中の任意の点列は収束する部分列をもつ (収束 先は A に属する必要はない).
 - (d) \bar{A} は完備かつ A は全有界, i.e., $\forall \varepsilon > 0$ に対して有限個の点 s_1, \ldots, s_n が存在して, $A \subset \bigcup_{i=1}^n B(s_i, \varepsilon)$ とできる (このとき, 点 s_1, \ldots, s_n は A に属していなくてもよい). この点の集合 $\{s_1, \ldots, s_n\}$ のことを集合 A の ε -網 $(\varepsilon$ -net) という.

● 距離空間における可分性の判定条件.

- (S,d) は距離空間, $A \subset S$ とする.このとき次の条件は同値.
- (a) S は可分.
- (b) S は第2可算公理を満たす、i.e.、S は可算個の集合からなる開基底をもつ.
- (c) S は fully Lindelöf 空間,i.e.,S の任意の部分集合の任意の開被覆は可算部分被覆をもつ。
- (d) S は $\inf\{d(s,t): s,t \in A, s \neq t\} > 0$ を満たす非可算部分集合 A をもたない.

位相空間論からの準備

2 つの位相が一致するための十分条件。

S は空でない集合, τ_1 , τ_2 は S 上の位相とし, τ_1 は τ_2 よりも強く, (S,τ_1) はコンパクト空間, (S,τ_2) は Hausdorff 空間とする. このとき, 2 つの位相 τ_1 と τ_2 は一致する.

C_b(S) の可分性.

S は完全正則空間とする. このとき, Banach 空間 $C_b(S)$ が可分 \iff S はコンパクト距離付け可能.

● 完全正則空間の閉集合とコンパクト集合の連続関数による分離.

S は完全正則空間, $F \subset S$ は閉集合, $K \subset S$ はコンパクト集合とする. このとき, $0 \le f \le 1, f(F) = 0, f(K) = 1$ を満たす $S \perp O$ 連続関数 $f \in C_b(S)$ が存在する.

. • 下半連続・上半連続関数.

S は Hausdorff 空間, $f: S \to \mathbb{R}$ は関数とする.

- (1) f が下半連続 (lower semicontinuous) \iff 各 $a \in \mathbb{R}$ に対して, $\{s \in S : f(s) > a\}$ は S の開集合.
- (2) f が上半連続 (upper semicontinuous) \iff 各 $a \in \mathbb{R}$ に対して, $\{s \in S : f(s) < a\}$ は S の開集合.

下半連続・上半連続関数は次の性質をもつ:

- (a) 開集合の定義関数は下半連続. 閉集合の定義関数は上半連続.
- (b) f が下半連続 ← → -f が上半連続.
- (c) f が連続 $\iff f$ は下半連続かつ上半連続.
- (d) f が下半連続 $\iff S$ の点からなる任意のネット $\{s_{\alpha}\}_{\alpha \in \Gamma}$ と $s \in S$ に対して

$$f(s) \leq \liminf_{\alpha \in \Gamma} f(s_{\alpha}).$$

f が上半連続 $\iff S$ の点からなる任意のネット $\{s_{\alpha}\}_{\alpha \in \Gamma}$ と $s \in S$ に対して

$$\limsup_{\alpha \in \Gamma} f(s_{\alpha}) \le f(s).$$

(1) (Ω', A') は可測空間で、 $\eta: \Omega' \to \Omega$ は写像とする.このとき、 η が $(A', \sigma(\Gamma))$ -可測 \iff 各 $\xi \in \Gamma$ に対して、写像 $\xi \circ \eta$ が (A', \mathcal{B}) -可測.

直積 σ-集合体.

 $(\Omega_{\alpha}, \mathcal{A}_{\alpha})_{\alpha \in \Gamma}$ は可測空間の族とする. 次の形の可測長方形

$$A = \Pi_{\alpha \in \Gamma} A_{\alpha}$$
, 各 $A_{\alpha} \in A_{\alpha}$ で, 有限個の $\alpha \in \Gamma$ を除いて $A_{\alpha} = \Omega_{\alpha}$

によって生成された直積集合 $\Pi_{\alpha\in\Gamma}\Omega_{\alpha}$ 上の σ -集合体を $\{A_{\alpha}\}_{\alpha\in\Gamma}$ の**直積 \sigma-集合体**といい, $\Pi_{\alpha\in\Gamma}A_{\alpha}$ で表す. 特に, すべての $\alpha\in\Gamma$ に対して $\Omega_{\alpha}=\Omega$, $A_{\alpha}=A$ のときは, $(\Pi_{\alpha\in\Gamma}\Omega_{\alpha},\Pi_{\alpha\in\Gamma}A_{\alpha})$ を $(\Omega^{\Gamma},A^{\Gamma})$ で表す. 直積 σ -集合体は次の性質をもつ:

(1) 各 $\alpha \in \Gamma$ に対して

$$\pi_{\alpha}(\omega) = \omega_{\alpha}, \quad \omega = (\omega_{\alpha})_{\alpha \in \Gamma} \in \Pi_{\alpha \in \Gamma} \Omega_{\alpha}$$

によって射影 $\pi_{\alpha}: \Pi_{\alpha \in \Gamma} \Omega_{\alpha} \to \Omega_{\alpha}$ を定義する. このとき,直積 σ -集合体 $\Pi_{\alpha \in \Gamma} A_{\alpha}$ は すべての射影 $\pi_{\alpha}: \Pi_{\alpha \in \Gamma} \Omega_{\alpha} \to \Omega_{\alpha}$ を A_{α} に関して可測にする最小の σ -集合体である. それゆえ

$$\Pi_{\alpha \in \Gamma} \mathcal{A}_{\alpha} = \sigma \left(\left\{ \pi_{\alpha}^{-1}(A_{\alpha}) : \alpha \in \Gamma, A_{\alpha} \in \mathcal{A}_{\alpha} \right\} \right)$$

である. さらに、各 $\alpha \in \Gamma$ に対して \mathcal{D}_{α} は \mathcal{A}_{α} の部分集合族で $\sigma(\mathcal{D}_{\alpha}) = \mathcal{A}_{\alpha}$ とすると

$$\Pi_{\alpha\in\Gamma}\mathcal{A}_{\alpha}=\sigma\left(\{\pi_{\alpha}^{-1}(A_{\alpha}):\alpha\in\Gamma,A_{\alpha}\in\mathcal{D}_{\alpha}\}\right)$$

でもある.

(2) (Ω, A) は可測空間, $f_{\alpha}: \Omega \to \Omega_{\alpha}$ $(\alpha \in \Gamma)$ は写像の族で、写像 $f: \Omega \to \Pi_{\alpha \in \Gamma}\Omega_{\alpha}$ を $f(\omega) := (f_{\alpha}(\omega))_{\alpha \in \Gamma}$ $(\omega \in \Omega)$ で定義する.このとき

f が $(A, \Pi_{\alpha \in \Gamma} A_{\alpha})$ -可測 \iff すべての $\alpha \in \Gamma$ に対して f_{α} が (A, A_{α}) -可測.

- Egorov Theorem. $(\Omega, \mathcal{A}, \lambda)$ は有限な測度空間, Ω 上で定義された実数値関数 f, f_n (n = 1, 2, ...) は \mathcal{A} -可測とする.このとき, $f_n \to f$ λ -a.e. ならば, $f_n \to f$ λ -almost uniformly, i.e., $\forall \varepsilon > 0$, $\exists E_{\varepsilon} \in \mathcal{A}$; $\lambda(E_{\varepsilon}) < \varepsilon$ かつ $f_n(\omega) \to f(\omega)$ uniformly on $\omega \in \Omega E_{\varepsilon}$.
- Carathéodory-Hahn Extension Theorem.

 Ω は空でない集合, $\mathcal F$ は Ω の部分集合からなる集合体とする.有限加法的な実数値集合関数 $\lambda:\mathcal F\to\mathbb R$ が $\mathcal F$ 上で可算加法的ならば, λ は可算加法的な拡張 $\bar\lambda:\sigma(\mathcal F)\to\mathbb R$ をただ一つもつ.

• Radon-Nikodým Theorem. (Ω, A, λ) は σ -有限な測度空間で, $\gamma \in ca(A)$ は λ -連続とする. このとき, $f \in L_1(\Omega, A, \lambda)$ が一意的に存在して

$$\gamma(E)=\int_E f d\lambda, \quad E\in \mathcal{A}$$

- (e) コンパクト集合上の下半連続 (上半連続) 関数はそこで最小値 (最大値) をとる.
- $\{f_{\alpha}\}_{\alpha\in\Gamma}$ は S 上の下半連続関数族とする. このとき、 $\sup_{\alpha\in\Gamma}f_{\alpha}$ は下半連続. 特に、 Γ が有限集合のときは、 $\inf_{\alpha\in\Gamma}f_{\alpha}$ も下半連続. 同様に、 $\{f_{\alpha}\}_{\alpha\in\Gamma}$ は S 上の上半連続. 関数族とすると、 $\inf_{\alpha\in\Gamma}f_{\alpha}$ は上半連続. 特に、 Γ が有限集合のときは、 $\sup_{\alpha\in\Gamma}f_{\alpha}$ も上半連続.
- (g) S は完全正則空間とする.このとき,S 上の任意の下半連続 (上半連続) 関数は連続 関数族の上限 (下限) 関数として表される.特に,S が距離空間の場合は,S 上の任意の下半連続 (上半連続) 関数 f は単調増加 (単調減少) な連続関数列 $\{f_n\}_{n\in\mathbb{N}}$ の極限関数として表される.さらに,ある定数 M>0 が存在して, $|f(s)|\leq M$ for all $s\in S$ を満たせば, $\{f_n\}_{n\in\mathbb{N}}$ は $|f_n(s)|\leq M$ for all $n\in\mathbb{N}$ and $s\in S$ を満たすように選べる.

函数解析学からの準備

- Hahn-Banach Theorem. X はノルム空間とする.
 - (1) M は X の閉部分空間で、 $x_0 \notin M$ とする. このとき

 $\exists x^* \in X^*; \quad x^*x_0 = 1 \text{ and } x^*x = 0 \text{ for } \forall x \in M.$

(2) $x_0 \neq 0$ とする. このとき

 $\exists x^* \in X^*; \quad ||x^*|| = 1 \text{ and } x^*x_0 = ||x_0||.$

- The Principle of Uniform Boundedness.
 - (1) X はノルム空間で、 $A \subset X$ とする. このとき、次の条件は同値:
 - (i) A は弱有界, i.e., 各 $x^* \in X^*$ に対して, $\sup_{x \in A} |x^*x| < \infty$.
 - (ii) A は有界, i.e., $\sup_{x \in A} ||x|| < \infty$
- (2) X, Y は Banach 空間で、 \mathcal{H} は X から Y への有界線形作用素から成る集合とする. このとき、次の 3 つの条件は同値:
 - (i) $\sup_{T\in\mathcal{H}}||T||<\infty$.
 - (ii) 各 $x \in X$ に対して $\sup_{T \in \mathcal{H}} ||Tx|| < \infty$.
 - (iii) 各 $x \in X$, 各 $y^* \in Y^*$ に対して $\sup_{T \in \mathcal{H}} |y^*Tx| < \infty$.
- Banach-Alaoglue Theorem.

X は Banach 空間とする.

- (1) X^* の有界閉集合は弱位相 $\sigma(X^*, X)$ に関してコンパクト.
- (2) X^* の有界閉集合が弱位相 $\sigma(X^*,X)$ に関して (コンパクト) 距離付け可能となるための必要十分条件は X が可分.

- Eberlein-Šmulian Theorem. X は Banach 空間, $A \subset X$ とする. このとき, 次の条件は同値:
 - (i) A は相対弱点列コンパクト, i.e., A の中の任意の点列は X の点に弱収束する部分列をもつ.
 - (ii) A の任意の可算無限部分集合 H は弱位相に関する集積点 $x_0 \in X$ をもつ, i.e., x_0 の任意の弱近傍 $U(x_0)$ に対して, $U(x_0) \cap \{H \{x_0\}\} \neq \emptyset$.
 - (iii) A の弱位相に関する閉包は弱コンパクト.
 - (iv) X の弱開集合からなる A の任意の可算被覆が有限部分被覆をもつ.
- Riesz Representation Theorem. S は compact Hausdorff 空間で、 $\varphi \in C(S)^*$ とする. このとき

$$\varphi(f) = \int_{S} f d\lambda, \quad f \in C(S)$$

を満たす $\lambda \in rca(S)$ が一意的に存在して、 $\|\varphi\| = |\lambda|(S)$ が成り立つ。言い換えれば、対応 $\varphi \in C(S)^* \mapsto \lambda \in rca(S)$ は $C(S)^*$ と rca(S) の間の等距離同型対応を与える。 さらにこの 対応は順序も保存する, i.e.,

$$\lambda_1 \leqq \lambda_2 \quad \Longleftrightarrow \quad \int_S f d\lambda_1 \leqq \int_S f d\lambda_2 \quad ext{for } orall f \geqq 0$$

が成り立つ.

連絡先: 河邊 淳

〒380-8553 長野県長野市若里4-17-1 信州大学工学部数学教室

Tel: 026-269-5562

e-mail: jkawabe@shinshu-u.ac.jp

第0 Banale的論的海標(Pat I)	NO.
この早in この講義を最低するにある)X果と外の電	Sil Rea Banah Babili
一方介。宝美见的节里下节潭下了长成了。	
(Pucalan) 3× (有素和食)からといかでする.
xeX1=对12水~(ND-(N3)是南西车车 11x	川が全者をき、人間をエス
: C113 (morr) 211 (
0=10 (0=11x CIN)	
(N2) da = a : a , FEL d r 複字数于FIT	i 実数 (= ストラー)
(尼部(第三) 11811+11日 (EN)	
THE ROMAN CHEANT SAIGHTINGF & DING	pace) KIIS.
(0.2) 企图 () (X,1	11.11) E DILAMETS.
() $ x - x \leq x - y $. $(x, y \in X)$	

(2))16/2000 da, p=112-y11 (2, yeX) 276 & 3/2000 2000.

(3) f(w):=||x||, f(d,x):=dx, h(x,y):=x+y (x,yeX, droxp5-) 1- [02\$73548cf. X->R, g: (CorR)xX->R,

f·XXX→Rn車號

·· //211-1141/5/12+4/11....0 (回標下. 141=11/11-1211 -11/11-1211 -11/11-1211 $||\gamma + \kappa|| \ge ||\gamma|| - ||\kappa||$ (2) AG, N= 1x-111 + Ett a 300/24 (D1)-(D3), i.e., 1-K (DD) day 20; day (DD) (D2) da, y)=d(y, x) (p, s1h+(s, p)h 2(p, p)h (ED) を関するととなるなかは、か (DD: da.p= |x-11| >0 2'ts. Zh= da.p= |x-11=0 = 7-1=0 = 1=7 (D2) Ma, D= 11x-111= 11/-1211= 11/-1211= d(2,12) (D3) y= || x-x | = | (x-x)+ (8-x) | = || x-x | x | = || x-x | (3) dr-d, Im -x, Jn-y, JThs, dr-d)-0, 1/2m-x1->0, 11/n-1/1-30 FLB: JOF (3) ELLALIN 0 < | (y+x)-(n) + mx) |, 0 < 1 xb-mix xb| , 11x1 < 1 mx でデー側はかごすべ. ルがかたる

 $\left| \frac{||x_n|| - ||x||}{||x||} \right| \leq \frac{||x_n - x|| - ||x||}{||x||}$

1 dram-dall= 11 (dr-d)am + 2 (am-x) [dr-d]. |am1+b/. 11am-x1

 $\rightarrow 0.1x11+1d1.0=0$

1. 0 <- | | - | | + | | x - mx | | > | | (x - mx) | = | | (y + x) - (ny + mx) | |

(0.3)康(Banch全面) 711公全面(X,11.17)的 元071141=622月3

距離 da, p=112-1111-1212京衛であると2. Banach自1110

以下in Banada的的父亲的有例正本中る。

(04) 151 (Barach 2) Da 151)

(i) mirt Enclider DR 10 714 ||all := (|all2+...+ |anl2 y2 |= 12)

Banach全面: m汉Unitary全面C"主面L")1141=南12 Banach全面.

(2) ADEND[a,b]上a連動本本本的方面 Cishish Cia,b]n.

7114 ||x||:= sup |xto| 1=1212 Banach \$10

(3) | SPC的上了了。 《集影和可能, i.e., 是门外个人的正确正有

X= (ZR) ESTOBER NOTINGED I'M DIG

Ap∈C: She → ONE (N→10) BRENF\$12上記の101-12 ARP\$ \$7302 A= (ARDREN & 置く. IXFzn. De IPz: 11xm-all > DETOS ZEETTO: DE Litz=E: NIE (王意《自然教とする。 (*) M. M. M.> MOOLS $\left(\sum_{k=1}^{\infty} |\chi_k^{(n)} - \chi_k^{(m)}|^p\right)^p < \varepsilon$ m-> DETBE DE -> ARTORE. M> NOREZ. $\left(\sum_{k=1}^{N}|x_{k}^{(n)}-\alpha_{k}|^{p}\right)^{p}\leq \varepsilon$ NA STETONS! N-> DE \$36. M> MO a 63. (En / TOR - AR / YP S & $\int_{\Omega^2} \chi^{(n_0)} - \lambda \in \mathcal{A} \qquad \therefore \quad \lambda = \chi^{(n_0)} - (\chi^{(n_0)} - \lambda) \in \mathcal{A}$ Zint. (3) m. m≥ no α ε 1 | x(m) - α | ≤ ε. 1/21=. | x(m) - α | → 0 T(x+y)=T(x)+T(y), T(dx)=dT(x) $(x,y\in X,dn 205-)$ ETATETES. TRESSE (linear operator, \$500 \$812 operator) EII).

#11. TH' 705-, TOUTS TO OFFINE TO ROLS. TE \$\$ 100 (linear functional) EII).

10.60 全年 (本部部部では) X, Yr フルム空から、T: X → Yrs

「Triang (bounded) 会 また。 (***) *** (***) (***) (***) (***) (***) (***) (***) (***) (***) (**

器ITCD

(3) Tr 9=02 事態

(证明) (D): Tri TORTON: Tx 12eX, IT(E)(长·11811).

35FXX35-M=5. 2/Ed. 5F316-ME

11x-mell . > = ||(x-me) T || = ||(x) T - (me) T ||

m-> 0 2 7 32 (m) - 21/ -> 0 7 502" T(m) -> T(a)

(ショは、丁のりの区メルズルでので、カーのでも車流

(3)⇒(D): The TARZTONETSE. FINENIE TIE = XnEX;

||TGD||>n. ||Im|| 8253. (Des. || h||+D. 実際. || m||=DET3E

In=0. :. TEN=0 :: 1/TEM/1=0>0=n.15m/1 ETO17854!

Z=2 Mn:= Mn.IDMI ETICE

1/Trad < 6. 1/211] OFT = 0 2 + BAEDO2" GE &. 1-2

q
NO.
(0.10)分() (高界部下10月、) K(s.t)·[A,b]×[a,b]→ Rn 基施178.
Cd.aIII = (b) = (c) =
ziaxx3写像T:C[a,D->CTa,b]n.有种的字。
IT (2011 S 11x11 amp K(s.t) lat for tae ("Ia.b)
で 115 元 170 TE Kis + DE IE (kennel) をする 110 で で 1 で 1 で 1 で 1 で 1 で 1 で 1 で 1 で
(范明) 仁下「A,6DxTA,6D上2"建带Ta2"、石界的一样基础。
Cis& = xase Ma, b] = \$to. Tabe Ma, b].
: \$\frac{1}{2000} = \frac{1}{600} = \frac{1}{6
Cr [a,b]×[a,b]×[a,b]+2"-禄建新Ta2"、ヨ8>0; 9-52 <8, +1-+2 <8
7651 K(s1, t1)-K(s2, t2) < E.
122. Se [A,b] 2 S-50 C & ETBE.
$\left \text{thctxct, or)} \right = \left \text{Cornct, or)} \right = \left \text{Cornct} \right $
$\leq \int_{a}^{b} k(s,t) - k(s,t) ct,cs + ct \leq \epsilon \cdot x (b-a)$
Pit. TGOn s=sozi重新、Son 任意Toozii TGOn [a,b]上ii重新、
(i) T: CIa, b] > CIa, b] T: T (ii)
了了《新疆经内部的》。102年那经主行可· 如至代下面的15家12.
Trail= and Christ) and I will. Christolat

15/15/1000 =: 11x1/ 5/12/1000 =:
$= x \cdot \sup_{N \in \mathbb{R}} x + x = x \cdot x = x + x = x + x = x + x $
(D.10)如(不是不) TO.17上空塞外下(产品的原数(i.o.)) 上回路的下空飞流奔奔水里东)全体的成分以全面下(产10,1)空表了
$[1,o]^{\perp}) \Rightarrow (b) = (b) + (b) = (b)$
では、水では、10つ、10つ、10、10つ、10、10では、100で
(記角) xnt):= tr (m=1,2;) と名と xne (10,1) z: xn = 1. 一方、 T(xnt) = 和 + n-1 tonz: T(xn) = n.
1xen. men, = ane C'Io, 1); man men
(0.12)強(有界部作用素《作3全面)X, YE TILLAMETS. B(X,Y):= Xbis Yna 有界部作用等全体とL, T, SE B(X,Y), dn
7/3-LT3
和T+日: (オのは):=Ta)+日本 ストラー治し: (オフは):=よての、サマモX
\$\overline{\tau}\cdot\tau\cdo

COOP Filing Leaf 7mm ×35€

と写真すると、T+G、dT、Onすい2百界京都、下南寺:1011=0とToB、 62 BX, DA NOLIZABETES. (1.13) 南頸 (有界衛形作用素《下3 Bandanana) XII JILOSA YO BANGLEDETS JOES BOXYDRSFAFTING = 12 BANGLEDETS. (PEAD BX DR. DINCOURERS - F. (N1) ITTI= amp | TGOI >0. T=0 Tis ||TI=101=0. IT=. ||TI=01782. 1/2 | (X = 0 () = 0 (: T= () (N3) 117+211= sup 11 (T+5)(2)11 < sup > 117(2)11+ 115(2)11/ = || Cx) | + || = || Cx) || = || T || + || Cx) || que = BOX, YOUTH DITTOLE STRYE BOX, YOU Cauchy 51/2 To. 4 E > O E () = MO € () : M, M ≥ MO Q & 25. | Tm-Tn | < 8. YXEXIEDE (*) 8M, m, n> moa 23 $||T_m(x)-T_n(x)|| \leq ||T_m-T_n|| \cdot ||x|| < \epsilon ||x|| \cdot \cdot \cdot \cdot \cdot$ 102 STOWNETO CAUCHY 5/18TOZ. TOTATOTO TO TOUR TO TOTATORE TO TOTAT

Filing Leaf 7mm × 35/5

等O Barach全面論的本稿(PatII)

つらin フルタ的上にかりなる有界部形の原数が存在するとE 保証するHahn-Banachの定理E記的する。その社に Somの福程E 公理というをする。

(0.14) (李順) 全順方,鎖,上房,上限,福太)

X内空流、集合と下。Xa要素面に、介a3oa条件生满下了直通

图信三岁里教加川张那:

(P1) 9Sx (取新运则)

(P2) rsy poys x Tobre x=y (反对环运即)

(P3) NSY 63 YSE 766 YSE (程知,正到)

つとえ、Sace手順節東係 (partial ordering)といい、(X,S)acte.

丰順吊事会 (partially ordered set) EII).

以Tin(X、三)的丰顺序集合と下。

(i) (X, S) y 全順序集合 (+stally ordered st)

会 Xa 任意の2つの果然ス、りば 比較可能, ie., NSy またい。 リミスや、放り上っ。

(i) 人 (chain) 会 (C, S) 的全个意思, i.e.

CX2 C+DETE.

No.
(iii) ACX2" A+ P & To. A to LISTAR (upper bounded)
\$ = 7 x X; as xo for tach.
DES JOSE Aaba (upper bound) Isur. Art LAXE
きという。
(17) ACX: A+中心了。 A L界全体的及事会后最小果然为的
BTITELS SOE A a LIPE (Supremum) EIIS.
xoeXx AatPe & as as for Yach
Ci) as a fortar Athri 20 ex.
(7) The X to The (maximal) of the WE TO 3 WE X TO BELTON.
大o Zoma 神经人。是外公理,要可愿望,Housdaffa 不是原理と
アクランとか、それがそれる:
77.合果有剧中于京都二上"中食"的高于>、露面的niss (21.0)
ではまました。
建分理 (Axiom of choice) 下r事后ILa(生态a写编:Fa)+中
for the I E TETETETS. TOLES. FOR E FORD for the I ETOS I La

V 15			
PID.	4.00	ゟ゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙	7
$\Delta \mathcal{V}_{\infty}$	$\mathbf{H} \wedge \mathbf{A}$	26	- d 7
->1/2	- N _ 1	() !e	- y 0

野門理(Well-ordering principle)分表の集合に整列可能でする。
かち、分表の集合×の×に適当な順度 < を定義し、(X, S)を全順事会
で、その空でない、分表の帯合集合が常に最い元をもつ(n.e. (X, S)を整列集合
とする)おにごろる。

Hausdoffo Totople (Hausdoff's maximal principle) 任意文子順序集合内包含文学、有意味:Totople)

为2.以下2. Zoma補題E利用12集2以金的上发12 Hahn-Banacha党理主部的78. 集)以金面空本籍至海集了以金面《楊台上花掘可80公下鞋中1人下小户省路下8.

重要。定式化是证明。下对一基本的方用商品研究了得智12万人:

· Xz单都电面,M,NIXA部部合空间的下。

M+N:= {x+y: xeM, yell

ETKE M+N13 Xa 熱肝静命空南とする。 THE MENIE POZ売られた

· 06€×1=激12

[xo] := { 270 : de R9

· 5073 图象合作部成 4 [62] . 3分形

· Mrs Xa 建形部分全面ETO. 产品ETTOFAIC、M上空基本标题的内容数个·M→RIXTOR

11-f11:= sup / 1/20/: NEM , 1/21/51

とおく、M=Xz、fp、不動のとなり用からなりますではと一致する。

智準編的福電与2%

10.16) 商品 XE > NL公面、Mrs Xa 静静谷全面: 如今M 上78. Mo:= M+156] E78. fe ML 2 虚以本有原南的小体数 上7862. fre Mo La 有原面的小文数 fo 1= 形混以,11911—119611 E2:38. (註明) 十=076的で fo=0 L可知であ、3-2: ++0 L可。 1511年11年12日本場合で表之る:

(i) Ye Mort Y= x+2% (de R, NEM)と一意に電小外る

71-92= (d2-d1) 26. X1,92 € MTO 02" (d2-d1) 26 = 21-92 € M

d1+d2 € T8 €, 96 € M € TO 17 \$ 1 . : d1=d2. JOES. 91=92 € TOZ.

52 75 13 - 15 ADZ 75 COOP Filing Leaf 7mm \ 35":

I.D.
NO.
352 ROEREBBIO.
(1) := f(x)+2 00 (y=x+2 00 Mo) (1)
を定義する
Cii) for Motifier.
·) Y1 /2 = M & J3 & /1 = X1+0126, /2 = N2+0226 (d1, d2 & R, X1, X2 & M)
と一意的に表せるこのは、ちりかってはからいりってはからいる。
==== (x1+d=)+(2+d=)x0Ta2'
fo(1/1+1/2)= fa1+2>+ (91+95)10 = [f(2)+9110]+ {f(2)+9510}
$= f(y_1) + f(y_2).$
BER, YEMO 1-5012 for (AN)= BJOHN) ETOSTEE POTE 1-17-18
52 1×72/15. 1611=1 5703 851=10 a \$ \$ \$ \$ 2003:
11-611=1 (>) fo (4+0x0) = 1-f0x)+dno (= 11x+0x0 11 (+xeM +dER)
(121411(:) (0 +64, Maxy) Noxb+XII > /21/2 + (xi)/1
$(6 + 6 + 6 + 1) 0 \times 6 + 1 \times 1 + (1 \times 1) = 2 = 10 \times 6 + 1 = (1 \times 1) = (1$
(=) -f(Z)-112+2011 < 105-f(Z)+112+2011 (Hack Hato) (*)
() No Einhadal 質, Ioo (· ·)
1/22. 1/foll=1とするにい、NoeRを(*)を商をするかに選べてるい、

CCCP Fing Leaf 7mm + 35+

Mr. July neMrx12 15mm 170x2、サルサレモMrx12 15/00-5/00/= | flu-vo/ < 11/1-1/1 1 (U+26)-(V+26) = | (U+26) + | V+26) $-f(w)-|u+\infty|| \leq -f(w)+||v+\infty||$: sup 3-frw-114+001/3 < inf 3-frw+11v+001/3 2-2 cm {- fab-110+xoll} < ro < inf?-for+110+xoll & TOERE 可及コマのこのがい - f(u)- | u+00 | < 10 < - f(v)+ | v+00 | (+u, +v+ M) 702 最后. HH+1 a と31 9= 5/11911 とおとと. 11911=1 とTBOOZ! 9aTERE 90 pr Labizitains b2. fo= 1411. fo Etitro En. D (0.19) Holm-Barach of理 Xn DIKSA, Mrs Xa, 港市市合金的、 TEM上芝居或外下不断的心体数之下。 TOUS for X上a有界部形 「自動力に正義が、しかき、1911=1foll とごろる.

(FIA) M=XaysaSTERIATNISTERSON. For. MEXETS.

CCOP Filing Leaf 7mm + 35%

了:= {8: gra ME 含亚南南 2010 E L no fo TERE2! [115 E L 2: 百界和尼2: 1911 = 11411.

LFKE. 7000.1689. 7+ 0223

J1, J2€ 不1=对12. Zo写真真EZYZYE, E2 E 对8 E.

JISJE FICE PO JIGO = JOION (YXEE)

1562万上大小東原王事入了86. (万,5)10年順序集台,6708.

B = Squipe LyE Fre chain ETE.

· Gre LEAR

DCE FOREX = THED; QUE FUTOUS. JOLX) := gulas) 1=8". ISSE

go: Eo→ RE TETO:

(i) Tarans well-defined, i.e., XEEppi 隔隔上处理的方下的表现。

· Dac For En Bu En 1= 12118 Ets. C= & Spige Lyn chain

Tooz. Pys 32 FF 325 gy 2708

PUS Byassy. ExCEn : RE Ex 2' golx)=gylx).

コでいまのy spalige nata のなり。jour (xxx)= (xxx) Examin Fr11が11

15Ton. for 2. well-defined

Uis for 3 2 gys for the L

·) goe Fildie: Ety DM Tooi EDM. for golf. father.

· goa銀形注: x,ye Eo Etrox. = p,= DeL; ge Fr, ye Eu

- 2 G= fgy: He Light chainToas gy Sgu HETT gus gy.

gue graves. EncEs: 4,4€ Es i folos = dolas, golys= golys

=== 9+4 E> ETBBazi

(y) of +(x) of = (y) x (x) c f = (y+x) x f = (y+x) of

からりゅときも同様に12でせる

TE. BER, re Edication of parts popular Postalistica.

Pate John Bo La The

· 1701=191

:) for fathetox: 19012 11/118 Abb. 62. 1901 CIP 1127.5

re En cides. = her; he En

120(x)=124(x) = 12/11.11x11=141.1x11.

11711211711

LXEM JOE FETOS

2 So for the LISTER SER JOAN FAIRD &

XLM GNLISTRITZ

IX+75082 (J. Da (Fra chain to LE BRETOBOR Zom of BLEM. 37. 花葉音·子·方·双约·有森城的XETTB · D foxsit & Moel. MoeXitse. = at Mo. 788. 福知0.16 1=8). for Mo+IEOI + NO TESTE JOK BIFOR. DES. JOEF2: BZforb 90+foと130で、foは了の松木栗素であるとに 1208. Joz. Zaforistàs fathatestos [] Hahn-Banach《空理内》次的古代式之别用SMB TET发的 (0.18) 系(Holm-Barach 《主題《遊礼】) XE) NA会面, 90年0 ETS. Tals = fo: XLa不能的人。 (DA) M=[26] 17 Xa TATARADA . SZEM15 N=d26 (de R) E 一意的上表外。 1) N=d120=d220 (01,d2 EDE 2) 1= = xhEET36. (d1-d2)20=0 36年070201=02 102 一意的必 ランジ 「(x):= 2 ||x0|| と 定義すると、 fis M上の有界限形に自動で、 「なか」2011、 || 1 = 1 = 満たす (を自:確かる). for Hohn-Banachの定理をり、fir X上 □ 不能的不多数 fo 1= Table xh. このfo p' を す と Too 2113 (ことを

CEPT-128

NO.

(0.19) (Hahn-Barach a 定理 a 变形 II). Xz) 以图的、Mz Xa
那部合金面E板. 90年METS. TOES.
ヨf:X上a有界電形的数:fo(M)=fog,fo(xo)=1,11foll=1/d
FFI. d:=d(56,1M):=inff 11x0-411: he Mg.
今年刊新成のM.37天3 Cox J+M=: M. OCh ison M事成 C保証
全面: BaeMir a=m+dso (meM, deR)の形に一意的に要する.
3-2. fi(x):= de量(E. fi18 MI 上a部下门本数: fi(M)= 209,
子(56)-1至南西 (28自治)。
· fir. MI Lz TRz: Ifill=1/d
··) XEMI 2 SEM+dJO (MEM. DER) ETESARIBETS. Zaes
fia 2 = 1 / [Cm+d20] = 10 0
一方, d+0a63. da写真如.
$ M+920 = 9 50 - (-\frac{9}{7}m) 5 9 .9 $
O, DM. d+0 a ks.
fi(m+dx0) \le \frac{1}{2} m+dx6
±31 17 d=0+1821 501 £Daz". 71∈ M, 1=\$\$12.
$ f(cx) \leq \frac{1}{2} x $

(52. fin Mitz ARZ Ifills /d & 108. TE ILIIS NO ELES : DESOE ELE. da ESTON = m=M: 120-m1 = d+2. 3-2 U0 = d+8 (20-m) & 76 (8. 11x) = 1 =. 410 JEM. files= 1-2. 102 If: 11:= sup & Ifcast: ue Mi, 11011 = 13 > f(uo) = 1+E === EDOLA (ELEJOUS, EDO FISE "IL" | > 4 * LXFW. 于112 Xa部部部的MITABORTE (M)= 809, fi(xò=1, lfoll=1/d z 酒声tazi . Avi Hahn-Banach a 定理 87. fix X主持 NOTERE to por BIETS. To to be to (M)= 3 of, to 100=1, 11fol=1 d z tate すたの名にてせる

24	
NO.	
 <u></u>	
X	
 · · · · · · · · · · · · · · · · · · ·	

<u>25</u>
30 Banach空的論中isa準備(Part III)
この島が、フルム南上トンルムを相(=確定相)からありで相を喜えし、その
(智度是 1608) [0 \$a\$Pa] [10] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4
· 有限分析了以会的(多分式和原列内)以4次车的部分到至于0
·無限公元)以全面:有界点到内区的节任)以中中下部的图室中的一种
· · · · · · · · · · · · · · · · · · ·
無限公司以為的是例形的概念、门以公司的通过的多
弱化相,弱*任相
(0.20)宜養(強双对空的)Xr6 JILC空的ET3.
X*:=XLa有思想的原教全体的成为113112的
Tol. X + 309 (Hohn-Banacha ZFD) LOXA SEE XOZZZED ENS
~で、
x* := sup x*x . x s
17 X La DIVa zi Di), (X, 11.11) r. Banach & A) ETOB. Za Banach

空的X*a之上下 Xx强2又对容的 という.

(0.21)定义(弱企用) X16 21以图的 X2 X032次图记号。 96€×の基本近傍気と12 W(xo; xt,..., xt) = {xe X: | xtx - xt xo| < E (k=1,2,...,n){ [FFI. ne N. Ex, xx,..., xx e X*) O形EL下集合の全体正形23(实際, この形《集合全体的基本近傍冥. 《条件·清西之》、广州= 602 喜人外3 Xa 信用 E 弱作用 (weak topdogn) EIIII, o(X,X) 主要す 以下:弱位相のもつ基本的な性質と引とみである (D.22)命題(弱红相a/性質)×107114海南,X*E Xa双效 全面とする (1) 弱红相o(X,X)n. Nighu红相(Troks, prigizbo-倍的重源) 2" I'mbendy L'E's (3) (配证相《not 1=132家) fralder CXII not, 如《XET》 级的的后的收集了。(环状, 5(X,X*)上121/2中军了) BBIZIAn Haudonftoazi, BBVRTa TEPER-TE zi Lo.

- (中)(强促的人工的解释人人)为自己的。(全)(强化的人人人)为一种解释人人人人

今 Xn有限次元

艺术。温度处于7114分的Xx旅馆相与(X,X*)的X上xx1114位相的目息

- (方) (新作物) 高级相应(X,X*) 水中新令X农
- (6) (四集合弱两包) (CCX内凸集合と下。この13 (6) (四集合弱两包) (CCX内凸集合と下。この13 とかりにはないので、大の弱に相で(X,X)に向する何包 これた、 にかりに体集合 (今に高に相に使いった集合。 (7) X, Yr)に含めた、丁·X→Yr 湯形作色素と下。この12、次の

3002 PMG (2) (1):

- (i) Tra Xa JIK(配) Ta JIK(配) [2] 正新
- (ii) Tre XaDILACTA, Ta弱位相上的12重点
- ()的 Tra Xa弱红相, Ya弱红相上的12重新

Zh/2. X上内部的内容大1=效12.

fex*, ñe., ft) NA(TA) ER NATA (> fn 弱(TA) ER) 12連続

NO

(0.23)京美(弱作用的京美) XIONICADA, X*E XA双对空角上了。 塔EX*《基本边湾等上17

○元王(下集合《全体主教》、(军際、) 20年1月3年1月3年 (安康、) 2十元(1月1日)、 241年1月2日(Wede* 1月1日)、2111、万(X*,X)2天里 (安pology) と1111、万(X*,X)2天里 (安pology) と1111、万(X*,X)2天里 (安pology) と1111、万(X*,X)2天里 (安pology) と1111、万(X*,X)2天里 (安pology) と1111、万(X*,X)2天里 (安pology) と1111、万(X*,X)2天里 (安康、) 111日 (安康、) 11日 (安康、)

以下:弱光企和0千0基本的石性貧色表达人

(10.24) 金融(弱*证相以) Xro)以金的, X*t Xa双对金的。 X**t Xa等2双对金的(bidual), 可加力, 强双对金的(X*a双对金的上寸3

- (1) 弱*作用の(X*,X) で NiSHL作用(取は、加強にスカラー信用車帶) i 知、Hausdorffである。

AxeXI= \$\frac{1}{2} \quad \frac{1}{2} \quad \fra

35 (ETATE Hausdorff tooz) BB 47 FO TEBN - 18 2' IS

(3) (新作用《射影性用的容息) 各xeXII为12 下x 宣表了。 こ 2xx (5) = x x x (5) = x (5) = x x (5)

最弱。江泊。

(6) (弱作用《丰命庙生) 弱作用《X*,X)中南南(> Xn有限所。 (7) (X*上a v(X*,X)重新部门中数) (8) m 名 ne X 上 效 i2 X 上 a 部门中数下以下 v(X*,X) 真荫。 道上, X* 上 a v(X*,X) 重新市部 门中数下 17 虚当市 x e X + 河面 12 下 = 下x z · 与 2 · s h 3。

(8) Goldstire's Theorem: Xa APECTER Bx:= \xeX: ||x|| \subseteq 1/10. Xta

APECTER Bx*:= \x** \xext{x***: ||x**|| \subseteq 1/2 a \quad 2 36*(EA) \subseteq (X*, X) ||x|| \rightarrow ||x|| \rig

(A) Alacqlu's Theorem: X本序管证 Bx*:= \ x*EX: 1x*1515 17 弱行在 5(X,X)=1212 vompat, Zhtz. Xa弱行用上面12.475百年春日

	30
	NO.
BITETA 1-12 compat	
<u> </u>	
<u></u>	
· · · · · · · · · · · · · · · · · · ·	
	·
<u> </u>	

ccop Filing Leaf 7mm x 35+;

NO.
多1 Nistru 測度 a 定義 2 基本的小学質
La \$2/16 N.Strillera 宣義的功能以及全变的,干变的万公内語上召出了a
基本的性質工準備可3.
(1,1) is a \$ E is 12
(Q, B): 可侧的, J.c. Q内室:不安静, B内风。新命集合的最高
0-集合体(次0300条件下清除了集合旗
(21) de V
(52) Fe Athri Ece A
(63) Ene A (n=1,2,) Toin WE Ene A)
X: RBanalista, X*: Xa 22xTista
(1.2)京義(Nishiv側唐) Nishiv西集合体教以: A→Xix
Cis & & BPB DRIZAS (finitely additive)
ラッド素 E, Fe A 1- 初に 以(EVF)= 以(E)+以(F)
(ii) 45 PADIZIEDS (countably additive)
\$ 5.11= ₹ 75 { En Sm-1 C A 1= \$712
4 (ME) En) = Z=14(En) (Xa)116/2711-12)
以下in ET 第加江あるでいるトル事集合体数のことを早にいるトル自動

(vector measure) En).

(13)命题 4: A->Xra Night)由新春日散上了る。

(1) りも、有限的であるかられ、かくゆ)=0

(2) 水が可取からでくないではしていからからでは直ですりではある

0 = C \$1 p ..

(2) En= \$ (MZI) ETICE. SEN M=1 18 511 = 2 WEN= \$ 102. Ma

 $C_{\infty} \leftarrow n_{\infty} \quad 0 \leftarrow |C_{\alpha}|^{2} + |C_{\alpha}|^$

 $0 \leftarrow \|(\phi) - \sum_{k=1}^{\infty} \mu(\phi)\| = (m-1)\|\mu(\phi)\| = 0$

0 = C \$) 4 : 0 = 11 C \$) 411 C3 13 1

Mr. E, Fe Az EnF = PETS. E1= E, E2= F, En= p(m=3) E

TICE. WE EN = EVF

 $\therefore h(E \wedge E) = h(\bigwedge_{\infty}^{n=1} E^{\nu}) = \sum_{\infty}^{n=1} h(E^{\nu})$

 $\cdots + C\phi \cdot \mu + C\phi \cdot \mu$

= y(E)+y(F) D

(1.4) 新題 (Nishu)関連a基本的性質) 以: A->Xn Nishu)関連をする、

(1) Un Batalizhs (strongly additive): 5115 \$ Ensn=1 CA.15

文712. これ(En)はXの)114で収集する.

(2) 以防羅郡 (strongly bounded): 豆川=東西多王nh=1 C A1=京町2

 $\lim_{n\to\infty} \psi(E_n) = 0$

(3) 单调到的連続性: 气境。单调增加(减少)到 (下)。10 及后效12

lim $\mu(E_n) = \mu(\sum_{n=1}^{\infty} E_n) \left(\lim_{n \to \infty} \mu(E_n) = \mu(\sum_{n=1}^{\infty} E_n) \right).$

(EA) (1)18 (EM A)66. (2) 17 (Ra, BOOK a) (ET) 80 A) 60.

" Sansiyato > on >0

:) yn = 5 20 6 DCE. Synt 15 Canchy 51. 622. 7 8 >0, = mo;

l, m≥motioni 1/2-ym11< ε. 3:2" l=n, m=n-1 (≥mo) ET3E.

11/2-1/m1 = 11/n-1/n-1 = 1/2m1 < E : In->0 X

(3) 单調的pon的: EcE2c···c UEn=ElT8.

F_= E1, F2 = E2-E1, ..., Fn = En-En-1, ... & \$\frac{1}{2} \center \frac{5}{2} \tag{11 \tag{5.7}} \frac{1}{2}

 $\bigcup_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} E_n = E$

· y(E)=y(OFn)= = = u(Fn)= lim = y(Fr)

= lim / K(E)+N(E2-E)+...+ N(En-En-1)

= lim y (En)

华谢度。場合上同程1-12次。性質的示せる

(1.5)命题。 Nistrigity: A→X x 全变動 lyl ns A 上a 可算加速的下 非负值等合图数 (+ Ma 近正取)得了)と下る。

「以(の)とののとき、以下面界変動(of bounded variation)という

平町の場合にはその全変動なしからず有限で値をとる(谷はが [6]ap.47と や、128を見る)、しかじハントル復産の全変動は火いずしも有限で値をとるとる見らて、、

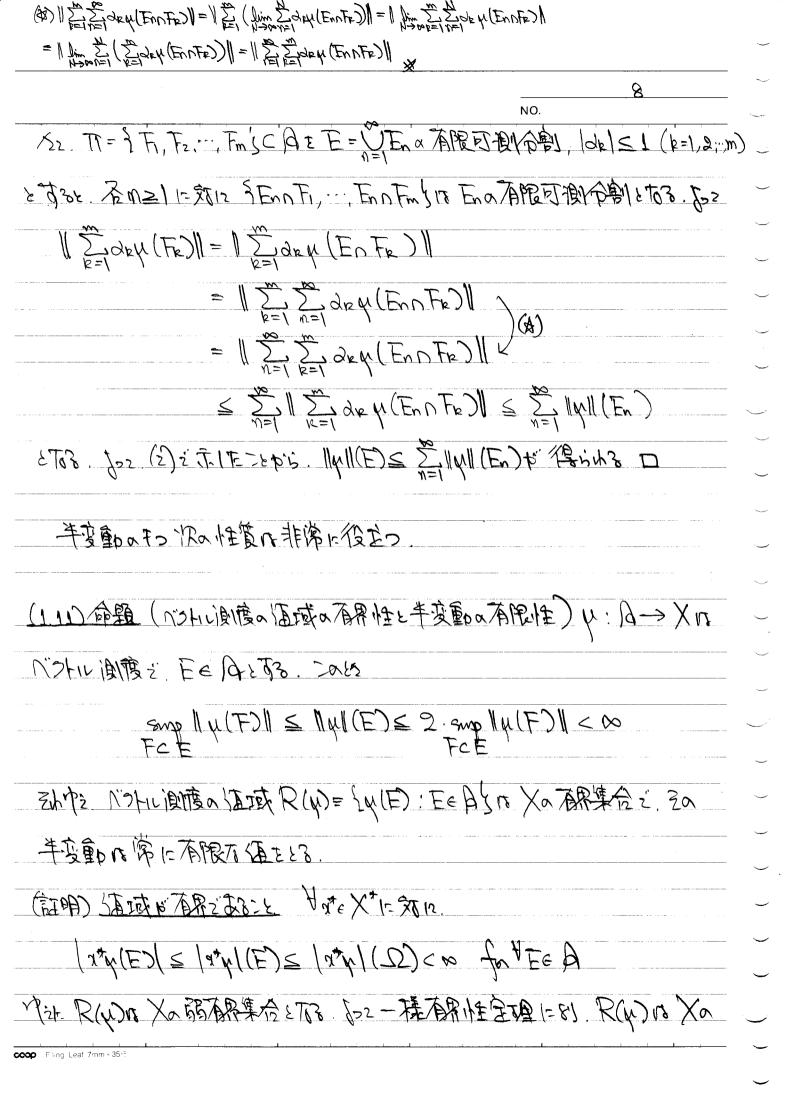
120回(有界変動ごないパットル)即動) 12=[0,1], A=[0,1]の Sebesque 可性を表す、入ってい、カラ LaCo.1]を 3(L,0]al (一A、外動倒になる、ハットル)をは、本色を発用で 以(E)= X_F、 Ee A

2位基分3

 $E=[0,1), E_1=[0,\frac{1}{2}), E_2=[\frac{1}{2},\frac{2}{3}], \dots, E_n=[\frac{n-1}{n},\frac{n}{n+1}], \dots$

とすれてるい)、このとう。 Ea有限可則分割と12 (E1, E2, …, En-1, PEn ER)を発えると

141(E) = == 14(Ex)10+14(Ex)10


 $= \sum_{k=1}^{n-1} \left\{ \chi_{E_k} \right\}_{\infty} + \left\{ \chi_{E_k} \right\}_{\infty} = (m-1)+1 = M$

F3/2" M→ D E J3E. |41(E) = 00 □

单调度。理論,特片单调度1=63種分論之内、全变的常常上有限之为8%的有效上活力以为一个有效上活用公从理論是用公外2113、34个之门的上国度1=63種分論正是用 可31-17、就是上可3N的上国度工有界变動了于A1-BB空下3的(Dindeanuifia

我分散) あいて常に有限ではとるく同じ中の基準量を新しに進入すいと思めます。 それがアトネア介な、一手変動ではなる、みを用いて多らされかられば関度による Bartle-Dunford-Schwartz mato mo 18 - EA 343. (1.4) 定義(年変動) 以: A -> X 2 N'S + 12) 倒度 とする 1/41(E) = sup | x*4/(E), EeA と宮義12 Myl(·)の以E 以の主変動 (Semivariation)という. (1.10) 命題 (牛変動の性質) 以· A-> Xia Nishiu 測慮とする (1) 14(E)15 141(E) = 141(E), E& A (2) || || (E) = sup { | \frac{1}{2} dR \(| \text{E} \(| \text{E} \(| \text{E} \) | : \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \text{E} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1} (3) 千变動 Nyll(·) ra A上2 華調項か: EcFTing Nyll(E) ≤ Nyll(F) EASTO 1213: SEN 191 (DEN) = \$ 15 \$ 10 (DEN) = \$ 141 (EN) (2)· T= {E, Ez,···, En's E a 有限可测分割, ldel < 1 (k=1,2,··,n) とする. $\|\sum_{k=1}^{\infty} \partial_k \mu(E_k)\| = \sup_{\|x\| \le 1} \left(\sum_{k=1}^{\infty} \partial_k x^* \mu(E_k)\right) \left(\leftarrow \|x\| = \sup_{\|x\| \le 1} |x^* x|\right)$ = (3) /4th / que = (3) 4th / que = (1(3) 4/h/

Som Eldellx*y(Ex) |de| < 1 (k=1,2,..., n) S GUD 2 | N#4 (Ex) | S GUD | N#4 (E) = 141 (E) 1/21/21 | N#4 (Ex) | S GUD | N#4 (Ex) | S 2/24 (Ex) = 1/4 (E) 122. (Ziz) & Hyll (E) # TXAE 直面为《不禁号·元寸:下={下,·..下,目。下《有限可取的图》:"对卡X"wid 12115/EJ3. = |x*p(Ex) = = sqn(x*p(Ex)).x*p(Ex) okeric = η^* . ($\sum_{k=1}^n |S_{qn}(\chi^*\mu(E_k))| \mu(E_k)$) $\leq \|\sum_{k=1}^n |S_{qk}(E_k)\|$ == = = = (x*y(FR)) (k=1,2,-1) 11. |dr|=1 & TATETAZ' 1= TATEM [(C) 2 (A) 15/ (C) 2 (A) 1/4 (E) 2 (C) (C) 2 (A) (3) 单調增加性作用的, 与2可靠的证准至示す。 SEnsing CAIR EILE FI TERIZEN (河域方,一般的Ensing CAIXTIZE 通常a方iz: Fi=Ei, Fz=Ez-Ei, Fz=Ez-EyEz, ..., Fn=En-DE, Ex, ... E ING SFUSALINE TO 1/2 1/2 OF FUEN ETES. 602 11411 (DEE) = 1411 (DEE) & 5 1411 (Fn) & 5 141 (En) 可其为如于这些 ||火川の草調理的小生

NO.
不帮命集合と下る。 102
$sup \ \mu(F) \ \le sup \ \mu(F) \ < \infty$ $F \subset E$ $F \in A$
<u>₹</u> ₹.
不等式。这明: 正倒《不等式的图》的: 62 不倒《不等式》(可)
TI= {E, E2,, En SEE & ARTIGNOSI, NAMELETS, TOES
I= 1k: 15ksn, xty (Fx) 205, I= 1k: 15ksm, xty (Fx) < 05
17/CE.
$\sum_{k=1}^{\infty} \left(\chi^{*} h \left(E^{k} \right) \right) = \sum_{k \in \mathbb{Z}^{+}} \chi^{*} h \left(E^{k} \right) - \sum_{k \in \mathbb{Z}^{-}} \chi^{*} h \left(E^{k} \right)$
$= \mathcal{A}_{\frac{1}{4}}\left(\sum_{k\in\mathcal{I}_{+}} \mu(E_{k})\right) - \mathcal{A}_{\frac{1}{4}}\left(\sum_{k\in\mathcal{I}_{-}} \mu(E_{k})\right)$
$\leq \left \chi_{+} \left(\sum_{k \in I_{-}} h(E_{k}) \right) \right + \left \chi_{+} \left(\sum_{k \in I_{-}} h(E_{k}) \right) \right $
$= \left x^{*} \mu \left(\bigcup_{k \in J^{+}} E_{k} \right) \right + \left x^{*} \mu \left(\bigcup_{k \in J^{-}} E_{k} \right) \right $ $= \left x^{*} \mu \left(\bigcup_{k \in J^{+}} E_{k} \right) \right + \left x^{*} \mu \left(\bigcup_{k \in J^{-}} E_{k} \right) \right $ $= \left x^{*} \mu \left(\bigcup_{k \in J^{+}} E_{k} \right) \right + \left x^{*} \mu \left(\bigcup_{k \in J^{-}} E_{k} \right) \right $ $= \left x^{*} \mu \left(\bigcup_{k \in J^{+}} E_{k} \right) \right + \left x^{*} \mu \left(\bigcup_{k \in J^{-}} E_{k} \right) \right $ $= \left x^{*} \mu \left(\bigcup_{k \in J^{+}} E_{k} \right) \right + \left x^{*} \mu \left(\bigcup_{k \in J^{-}} E_{k} \right) \right $
= \(\(\(\)\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\
Sup p(F) + sup p(F) VERCE FCE FCE FCE FCE
= 2 smp 4(F) D FCE

€€€€ Filing Leaf 7mm×35-±

NO.
(1.12)注意 帝野1.11でいったりはの動成の海域の海域であることが近にいか
アで銀で、それででは、一般と、一般を一般を一般を一般では、一般では、一般では、
到了
このその最後で、手変動とバクトル測度の別的連続性について示しておく
(中海軍內面的多種語)
(1.13) 命題 y: A-> XIBNISHU測度とする. SEnsing CAN FEAL
1/2 # 30, i.e., limint En (= UNEK) = limonp En (= UNEK) = E &
56/273. Zars. lim 11/41 (En) = 11/41 (E).
(BEA) \$150. En 7 & 120 L. J. Ev 7 & 100 L.
En 中とする、ヨモンO; 4 (En)>E (m=1,Q,)と仮立して予備を事び
< (年降、このとえ ∀c>o, ∃mo; lyl(Eno)≤E とToBazi SEn 4の年間
TRIPHE1=81. N2 MO 0 63. 11411 (En) SE ETOU Lim 11411 (En) = D ETOS).
主張! 自然数的说了多种美军调1面加到10m2 <m2<…と集合的多下了ca< td=""></m2<…と集合的多下了ca<>
with FRC Enr-Enr, \$ 737512
$\ \mu(F_R)\ > \frac{\varepsilon}{4} (k=1,2,\cdots) $ (*)
·:) M=1 = 7 = 7.
$\frac{\ \mu\ (E_n) = \ \mu\ (E_n) > \varepsilon}{\cos \varphi} = \frac{\ \mu\ (E_n) > \varepsilon}{\sin \varphi} = \frac{\ \mu\ (E_n) > \varepsilon}{\sin \varphi} = \frac{\ \mu\ (E_n) > \varepsilon}{\sin \varphi}$

. NO.
-B. E. L. P. Tonzi / xty/(En) LO
$\exists u_5 > u_1 : $
78 11.1 建命
2 cmp p(F) > p (En, -En,) > x*p (En, -En)
$FcF_{n_1}-F_{n_2} = \left x^* \psi \right (E_{n_1}) - \left x^* \psi \right (E_{n_2}) > \varepsilon - \frac{\varepsilon}{2} = \frac{\varepsilon}{2}$
$\frac{1}{4} = \frac{1}{4} \left(\frac{1}{4} \right) \left(\frac{1}{4}$
:== FC En,-En; y(FD) > =
是To3. 1X上a强作品型1.13至113
(主席」): 構成如下 SFeSpenc Ar Enle 素Tazi ya 可算poiz性后M.
シータ(Fr) 178 (まする、 for (4) に をする for (サ)を)
a 最新的说了下。
72段:一般《烟草73 [En]n=1 C 月 a 棉台
主語2: E, Fe a 1= 对12
$ \ y \ (E) - \ y \ (F) \leq \ y \ (E - F) + \ y \ (F - E) $
$ \mu (E) = \mu \left((E - E)^{\vee} (E \cap E) \right)$ $ \mu (E) = \mu \left((E - E)^{\vee} (E \cap E) \right)$
≤ 1/11(E-F) + 1/11(EDF)
≤ 141(E-F) + 1411(F)
COOP Filing Leaf 7mm < 35/5

NO.
$= \ \gamma\ (E) - \ \gamma\ (F) \leq \ \gamma\ (E - F) \cdot $
-B. 1141(F) = 141 ((F-E)U(EnF))
= 11 pl (F-E)+1pl (EnF) = 1pl (F-E)+1pl (E)
: 1 pl (F) - 1 pl (E) & 1 pl (F-E) @
D. D. M. / 11/11 (E) -11/11 (F) ≤ mmx } 11/11 (E-F), 11/11 (F-E)
$\leq V (E-E)+ V (E-E)$
FRE3 E-Enc (F-ED) 4, En-EC (ER-E) 14
·)"C"市用的是基金到了如(E-E), 了如(Ex-E)对海湖高少
z'&8 ZEEPAND.
$\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} (E - E_k) = \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} \sum_{k$
$= E \cap \bigcup_{k=1}^{\infty} (\bigvee_{k=1}^{\infty} E_k) = E \cap \bigcup_{k=1}^{\infty} \bigvee_{k=1}^{\infty} (\bigvee_{k=1}^{\infty} E_k)$
$=\overline{F}\nu\overline{F}_{c}=\varphi$
同样仁
$\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} (E_k - E_j)^2 = \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} $
1×1×10
SIMIL (F-Ex) + MMI (F-E) -D
CCOOP Filing Leaf 7mm×35°?

13

١Ο.

-: || || (En) -> || || (E) || |

(1.14)命題(Nづトル側度の到底を重視し、A→XのNづトル側度

Eds. ZEnjanc Opti Ee GINZ#AMMi K(EV)->K(E).

(FIBE)

主張1. E, Fe A 1= 第12.

14(E)-4(E)=141(E-E)+141(E-E)

$$||(Z-T)|| + ||\mu(T-E)||$$

38.2 E-En, En-E-> 0

·:) (E-ER)=中西部1130年表30年的10

$$= E U \left(\bigcup_{k=1}^{\infty} E^k \right) = E U E_c = \phi$$

$$= E U \left(\bigcup_{k=1}^{\infty} E^k \right) = E U E_c = \phi$$

$$= E U \left(\bigcup_{k=1}^{\infty} E^k \right) = E U E_c = \phi$$

$$F - F' \rightarrow \phi$$

	NO.	14
52 . $ y(E_n)-y(E) \leq y (E_n-E)$)+ 4 (E-En)	
2. 今到1.13m. llyll(En-E), llyll()= 0 E To 3
for μ(En)→μ(E) □		

82 NOHV測度a 到真brizh于 (Odicz-Pattisa字理)
この多されいうトル側度の値の自動を無限水元をあることに引生じる問題の一つと
12、锅湿相口的了了可算的湿度上11人空相上的了了更加湿性上面面。
11年11日か、
(2.1) in P.B.
(几, A):可治学的
X:早Bandley的、X*: Xa 双对绘图
(22)療、火:角ーラメはバントルは集合事故をする。
4 p' BB FT \$ po 13.65 (mealely countably additive)
一个大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大
ξΕη[η=1 C A 1= \$T12. xty (\$En) = \$= 2ty (En)
◆ 以下. X上。弱作用の(X,X) 1=中12可算加速的
一般上無限不同岛叫此的上西南部市的一个人们相对主人上岛的
知 H: Hilbert的, Sens is CONS in HETZ. Dals. en→o (弱地)
8-34: 11en-011=11en =1+0: 3en/1101=)1144zit 1701.

NO.	
元帅。弱可算的运性专可算加强性制真后弱小强念之故多之段想象	
公人多的、阜陽的面旅念的一致了了。可能,你宜理的民任力:	
(2.3)定理, 4: 百一> X 17 有限知道的278, 不经	
在一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	
(前部) (年)作品的	
(33.1) 以16可靠DDIE的27116下5份到10年月初以(创	
= = = = = = = = = = = = = = = = = = =	
と233. Lasz Hahn-Banachの日頂上M	
=====================================	
と건为 る :	
An = a(SEN): SEN1-102 9 BX XN3 9 BY	
A= の(5En4): SEny1=7-2至及びれるの一集合は	
とすると、Gon可範囲の集合からある(あ)2ri [6, p. 167]を見まり、102	
Xo = Dinean & 4(E): Ee Aog	
ETICE Xon Xa可合作部合含用上TB。 V(E)	
FFEI WEDE Xo for all E & Car	+
= De A1; 4(E0) & X0 & T3 & Halm-Barnel a TIPE	<u></u>

\7
NO.
$\exists x^* \in X^* \rangle \xrightarrow{x^* \mu(E_0) \neq 0} \forall x \Rightarrow x^* \mu(E) = 0 \text{for all } E \in A_0$
EZXX TZ ZÖYTE AL EZ ETAPPIZ BOTONZ ZÖY(E)=0 final EE AI
·) -颗1:从2:A-XENSHUND, AOCAI其存2:0(石)=A
ETS. JOSE N=2 on Anthing N=2 on A
(BREE) B= SEEA: N(E)=D(E)SERCE LOCBCAZ" BIO
monotone class & Too for Monotone class theorem (-81). B= Q & Too &
8:30" For (A1, Zhy)2. 20 4 (Fo) = 0 673 20 4 (Fo) + 0 1= 678 ×
春城のXo上nの制限をUnti表すとUne Xo z Until 至上とTB. Xors
日的Toaz: Banach - Alaoglue a 宝理1=8") Xoa 两单译取下 弱红面O(Xo, X
に倒してコンパット距離付か可能となる。して、
= Sun (a BABI) = uo E Xo; unex -> uo x for all x E Xo
とてる、Pis. 居Ee A11=対12. lim Ung 以(E) 17 切束する. 102.
Nikodym's Convergence Theorem 1=8') S Unky Sk=1 15 - FTE 1= FTE 10012, BD 178
i.e., Stra 3 Fmy C Day with Fmy \$ 1= 2712
lim sup Un; y (Fm) = 0. m→∞ j≥11
TIZ SEnic Qui Enel + Trazi
lim and Mut (Enk) = lim and suf (Enk) = 0 k > 0 /21
Filing Leaf 7mm 35:7 $E_{\text{long}} = X_0 7_0 \alpha 2'$

NO.
in single (Eng)=0
とつ3は、(*) 87 25mpy (Enx) > E (k=1,2,) であり、子有る、1P21= 以18
त हम्य दवद्याप्य दिल्ल
上空过水下至坡内BanahA的上去什么混然上文的文化与有名石
Online-Pathisa宣理《自用信情节》表示。Online-Pathisa宣理《证明
176 131210 [4] ap. 27 \$ Ens p. 85 E 夏 E. p. 27 210 N3 + 11 11 11 11 11 11 11 11 11 11 11 11 1
1-1973 Pothisa可到住了理区到1120部的了。一方,p.8527 倒露额的不
5IA 6'78 5421.3.
Odice-Pattisa Fire. Sange XETS. B& Sandio (X,X*) 1=18
12部分服散收束(subseries convergence), i.e., 产知内红色有部分
で(X,X)に取12 収ますると)をする、このとき、これなりに以に取12
静命、服教心文革飞。
Online-Pathis a 管理に13字項9.20章正明: 以: A -> Xn 局可能加速的
上する. SENJC AN EN 15年173. TOLY STULEN ON SERON ASERON
の(X,X)1=1212収集で、Pale, Onlice-Pettisの定理にか これ(En)n
)114に112124末する、こで、私でんの影で其かにはほにもり、サメルスないっ

COOP Filing Leaf 7mm ×35%

	20
	NO.
	<u> </u>
	<u> </u>
//	
······································	

\$3 Control measure of BEILE (Britle-Dunford-Schwartz of 1919)

この号ではNOHに側隙の理論を深化させるのに必要不可欠了 control measure

の73石性にあする Boutle-Dunford-Schwartz の空車についてはいる、この空車

15年創電力的於Band全的の部分集合《相対コンパント性に同了了深遠

7. 结果《棉箱》12得的分。 3:2" Ethia Thiz li 註明 E 与23a 17 肝的的

利的上不可能なので、必要で、結果だけで定義と来にすとめておく:

(3.1) 記号

(12, 4):可测室的

X: \$Banadon, X*: Xa ZZXT空的

ca(A): ALz: 宣義如下可算如这的单数值集合图数(=)重到重)

(a) 1x = 1x 1 Live (A) Live (A) Banal 8xd 29 x 12 x 1

 $ca^{\dagger}(A) = \{ \lambda \in ca(A) : \lambda \geq 0 \}$

ca(A,X): NOFIL) NOFIL) NO A A A A A A DISTOR DIVER With

 $(22) \|y\| = \|y\|$

(3.2)宜美(一提可算的过程,一摄入-真筋性,入-真筋性)

Of C ca(A,X), Re ca(A) ETS.

Cis Of M. - File PIP DDIE AS (uniformly countably additive)

ag. 1820, ASENSN=1 C Par with En 1 \$ 300;
M≥Mb75ir8 1/4(En)1/< ε for all μ∈ D
Cii) 17 rs 一種に 2-車節 (uniformly 2-continuous)
€ 4620' <u>∃</u> 820'.
E=Azi 入(E) < 8 7851で 川山(E) < を for all ye ?)
$\lim_{\lambda(E)\to 0} \mu(E) = 0 \text{uniformly for } \mu \in \mathbb{N}$
と表す
Ciii) HE Ca(A, X) ETE.
γρ 2-1年. (2-continuous)
\$ ∀ε>0, = δ>0; E∈ β 2 λ(E) < δ Tinni μ(E) < ε.
~ (E) = 0 λ(E) → 0
ともす
TRa带来的、牛距離空面(A,dx), 下町.
$d_{\lambda}(E,F) = \lambda(E \triangle F), E, F \in A$
α πρημε Βαίτε α Τ΄ Τ΄ - ΣΕΕ ΕΝΙΖΙΙΝΑ, ΒΕΑΝ [6, p. 158] FER

「4、月、8月了を見る、空理3.3mのかれ側度に対けて下めないるが、その証明の 年測度の現合と全く同様であることを一注意しておく。

(3.3) 京理 (Vitali-Hahn-Saksの定理) 入E ca(A), Synt C ca(A, X) ごるyn ロメー連続とする、下下をEEAI= 対に 以(E)= lim yn(E) が存在する と仮含する、このとろ、Synts ロー様に入一連続ごより、 以に入一連続から可算かける

£782.

アの宝理のVitali-Hahn-Saksの宝里をEberlein-Smulianの宝理を 用いてたかる(記の [6, pp.305-308] まいを「4:p.92]を見る)

(3.4) 空理 (ca(12)。部分集合《和实际系了》1951性利金条件)

XC (a/18) 1= \$\$12 LXFa \$44 10 @14:

- (13) 大川大田本ではコンハックト(三田本子の京都でありコンハット)
- (11) 光内有界的一播上可算加过的
- (iii) Xn るからヨスeca(A); Xn 一様に入一乗流

Sht Jars Dur

 $\lambda(E) \leq \sup_{\alpha \in \mathcal{X}} |\alpha(E)|, E \in A$

を関するに強いる

NO.
土之近川市和郊了了211分十年刊全条件ERadon-Nikodyma安理E用1112
青ヶ頂を小で、上宮町の部今集合の弱に用の(上、しゅ)に今ずる祖対
コンパットリ生の利息条件と12年名でDunford-Pathisの定理が得られる。
(3.5) PER (Dunford-Pathis a PER) RECT(A) z" XCLI(X) ETZ.
Of(E) = Sfdx, fe Li(x), Fe BET'C TOES TRAFITH FINE:
(い))大は不角対称コンパラト
(ii) 光内有界的分分。于天人们一摄上可算加速的
(iii) Xri有界的分子: fe Xfri.一種に入一連続。
Sz.以上の準備のキEzi. control measureの存在15月121:1973 Battle-
Dunford-Schwartz a ZEP & I'N'3.
(3.6) TIP. (Bartle-Dunford-Schwartz a TIP) 4: A-> X 18 N'S HIL
関度とする、次のCi)、(ii)を満たす入ecat(A)が存在する:
(i) $\lambda(E) \leq \mu(E) $ for all $E \in A$
(ii) lim pll(E)=0, i.e., \$\forall (\sigma) \tag{\infty} \(\sigma) \tag{\infty} \\ \sigma \(\sigma) \\ \sigma \\ \sigma \(\sigma) \\ \sigma \\ \sigm
(FIR) X= 3 14: 11x1 151, 97 x X 5 C Ca(A) ET'C.
主張上:大小都的一樣に可能的這的

~	1
Z	2

	_
N	O.

:) YEZO, SENJO CA WIND ENLY E EN BOD 13 ASTON2

命題1.581.

Sup $|x|^{2}$ $|x|^{2}$

ET08. for. = mo;

MZMotoria /xtm (En) < E for all xt Xt with 11x1 \le 1

Par Aca(A)的一播中可真的运的运行。于天文有别性的明的分类

1,02 空車3.4 M. ヨ 入ect(A);

(a) $\chi(E) \leq cmp | \chi^* \mu(E) |, E \in A$

(め) メニタオリ: 川か川ミュシルー様に入一連続

ET03

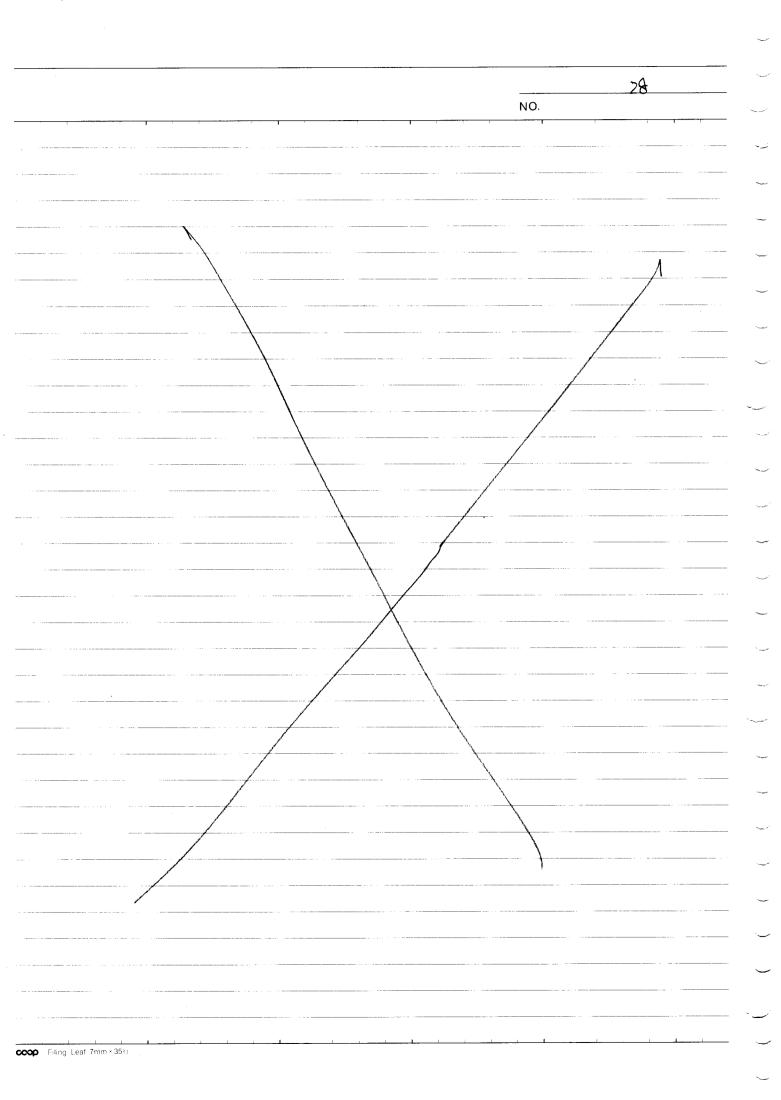
(DM. (i) to Aging

: 0<8=,0<3 V (8(d), E-

7(E) < 5 Tinn | |4(E) | = mp /2 4(E) < 2

ETES. for A FE A with FCE 1- \$112. 3(F) < STORS. My (F) 1 < \frac{\epsilon}{2}

1724 PB 1.11 - 87


1411(E) & 2 cmp /4 (F)11 & 2 (E) = &

ETU (ii) & Finh F

NO.
(3.7) 字表 字理 3.6 a. 7 a 2 E E. Ma 部的 1 (control measure) と、う.
堂姐3.60 註明《中《住班》と堂姐3.4别次《京学得的》。
(3.8)系 4· A→× × n N3+11-型性+73. これば、 ~ x*4·110+1151y は
ca(局) a 用对弱原间コンパット集合主義を.
control measure a 7375978 a Tic A × 12 Nikodym's Convergence Theorem
のハラトル復度への花珠を試みる。
(3.4) FID. (Nikodým's Convergence Theorem) Syngc ca(A, X) 2.
客E∈日に対12.4(E)= lim 4n(E)かるほするとう見生する、このとう、415
ハットル連貫: ろりからの一種に可事からあざる。
(BIAD) Byln a control measures & In ET3.
$\lambda(E) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{\lambda_n(E)}{1 + \lambda_n(\Omega)} \cdot E \in A$
と着くと 入とな(角)で 登理3.687 るいの 入一連続とてる。 かって.
定理3.3 (Vitali-Hahn-Sales a 至理) 上記、以及見事的证的。 Zhyz.
Notn週間で、Syngn一葉に入一葉に入一連続とてる。
SEMSMIC A 18 Em J & ETZ. Jaks. D(Em) -> 0 & ToBaz Sunha

- 様人- 運輸生にむ、snp fn(Em) → 1 (mm→ m) とある、1/21 n211	F.
このその最後で、control measure の存在性と発音には重する Rybaka に即する結果を紹介する、記用は、[3, p. 268]を見る。	ov 闺鹰
(3.10) 定理 (Rybakov 頂) 以: D → X TE NiStru 頂間とする.この! ヨッキャンギン、以 < マギャ、i.e., 以 re マギャー重張.	<u>ح</u> مّ
(3.11):注意, 全理3.10内 Tribat全的上次打2口一般上于成立之表	

COOP Filing Leaf 7mm x 35 ft

ST 7 14 年前上的内				_
54 205Pa里长/1 上埋	34	そのかの重要な	定理	_

この多ご部介が出る空車は、ハウトル側度のみでは事動度に対しても重要的ななるでするである。しかし、その記れの単側度の場合と同様に示するか、

あるい「「早)復度の場合の結果から簡単に事けるものである。

沉实重显远明在例2时[3, p.10]至是E.

(4.1)字理 (Pottis) 4: A→XIINO FIL)製度、入Ecat(A)とする、このとき、アの2つの条件の同価:

(i) lim 以(E)=0, i.e., 以17入-連続 入(E)→0

(ii) µ≪ >, l.e., E ∈ A = >(E)=0 78in µ(E)=0

アの定理は年刊度に対するNikodým Boundedness Theorem が管理に 事ける(例2で「3、P.14] E見も).

(4.2) TIP (Nikodým Boundedness Theorem) UC ca (B, X) ETS.

BEE A 1= 7812 sup II M (E) II < 00 Tobre 10 n - Total TAB (uniformly pells) is some II M (D) < 00

bounded), i.e., sup // (12) < 00

(证明) 万宜理《京王明波年到遗归文773 Nikodým Boundedness Theorem

Dis たまける。年刊度の株を coop Filing Leat 7mm · 35·1

NO.
X = f at 4: 409, 12/181, 9te X
YTY. TOUS TOTAL TO THE POLICE TO 12
sup sup (2*4 (E) (~ 00
とてる。 102年到度1-文TJ3 Nikodým Boundedness Theorem M.
======================================
smp // pll (D)
hein
この号の最後に東西遺に対する Caratheodory-Hohn a TERE 宝理 a NSt-1V
则度 Na 花碗1-2112江N3.
(4.3) [] . (Carathéodary - Hohn - Kluvánck Extension Theorem) Fr. D
不得车车的的交叉。从(不)力=A、和金车的的主的力
Nishu体集合国数上了3. Jars 次如条件内同值:
Ci> yn (一起的方)可能poiz的方式是更好: A->Xz+o.
(ji) = Ae ca(子); 以は 入一連続の子、Le., 4を20, 3520, Ee子i
2(E)<570 hr (E) 1/< E.
(iii) WIT 不上的最为的证的, i.e., S在意义证章不集ASII (Ensing C)

COOP Filing Leaf 7mm ≤35¹7

NO.
1= \$\$12 \(\sum_{n=1}^{\infty} \pu \text{\alpha} \) \(\sum_{n=1}^{\infty} \alph
(in) 以(子)=え以(E): Fe子」はXa和対面コンパかる.
551= TOL9 T(F) C Y(F)
(記冊) (i)= (ii): 豆理3.6 (Bartle-Dunford-Schwartza豆理) 81 印的60.
(ii) > (i) · 单重广对To Carathéodory—Hahna TEFE主理(句)in
16, p.136]) 1-87. Ja (ALNOTEREE) 2' 35. BE1=
P(E, F) = D(EaF), E, Fe A
上102年孫惟皇本本386.
O Fro PI=B12 Date Tale
② 4: (3, P) → ×n. Pに1012.一番種類
を示すことはできる。 あっての回れ、以の一張車帯の打造張文: (A.P)→X
节存在了了。不好的有限的过的分子事带上了了多种的人。中华
大陆四下三日至三世中一年13日日 11日 11日 11日 11日 11日 11日 11日 11日 11日
-10-19: 40 TEATER 20 Totale 20 Totale 20 July 22 To. Taks. Jake X*
1= \$112. Sty1= sty2 = sty on Fitos. Caratheodory- Hahn a TESTE IN
の一声は1=8y マリーマサル2 on A とてる。これ、メナイトをでので
41=42 on A. 121-18-18-15-7-20-1= D

Filing Leaf 7mm×35

		32
	NO.	
		<u> </u>
		——————————————————————————————————————
		/
	/	
<u> </u>	/	
	X	
		<u></u>
	A	

ino.
\$5 Bartle - Durford - Schwartz - Jewis FIF
この号でいいらりに後の理論長用に際に重要が直具の一つであるストラー値を
a NiStruille 1=13項的(Bartle-Durford-Schwarte-Jewis 項的)1=2112時報
上述的。この獨分理論《長冊上際12vr、Jz上等3章z述が下Nohu)則度に
対する control measure が重要で13割を果てき。
(5.0) its.
(几,A):可测全面
X:单Banach空面,X*:Xa22对空面
B(R): 東数五電R a Bonel集合pii 1230-集合体
(5.0字表 (零集合, almost everywhere, 可测性) y:A->Xnnishili自ret
(i) Ee A + 中華金 (4-mul of) 分配 1 1 1 (E) = 0
(ii) Prose we DEVDTS & PETE ETTS.
司Nea: N-客食;
2-NC fwe D: Powt DITTE
ETOBES. 17 18 P(w) 17 4-17 ELEINTEBET (4-almost everywhere) 2
BOZD EIII, "P(w), 4-a.e. WED" ED'C.

COOP Filing Leaf 7mm 35%

34
Uii) f: D→ RIF IDAXETE.
fri A-FI-AI (A-measurable)
Be BCR) 12 FT (B) & A
(5.2)な (単の数に対する積分は美) ル:月→メモバットル側度とする。
f:Ω→Rn A-可测re 華南教 (simple function), i.e.,
f= TodeXER, MEN, SERSR=1 16. Da有限可測合例, ORER
と下o. Taes 本教fa集合下e A 上ia 精合 (integral) を
Stay = Edry (EnEr)
i 定義77、集合100数
Ee A -> Stape X
a SEE. FUEDS, fay 1= 12573 IETER (indefinite integral) EUI,
4(f) = 54(D) a ZEE. FIFTED (definite integral) List.
(5.3)命題(革命故《積命》(生質)以: △→ X n Ni3hw·測度,
5. g: D→Rn A-可侧单D数, d,Bn 单数, Fe A とする。
(1) fa ELza 積分 Stap 15 well-defined, i.e., 積分本本方至中的
表と12表現なる T方に下げすに一意的に定する. ************************************

NO.
JOES. (ii) a Tope on LE faur DOSE Lia Top (integral) EIIII,
Say 2表寸, i.e.,
) Sup 2 12 , 1.6.,
Stap = lim Stadp.
表E. 前と同様に集合体教 fy: EEA H) Styre Xのことを fay15
関する下海的 (indefinite integral), 以けき ちゃしいのとも fayl=
南西全有人(definite integral) End. Sint. fp"(i) n条件を満在すけ
f 17 4-日泊(4-measurable)という。
(5.5)命題(積合α性質)以· A→X内的批測度, f· D→R内
A-TAMBAR, EFALTS.
(1) fp: 4-可有合下ing. fa以上的了ELza積分 Stayurs
well-défined z de , i.e., f E P DE ST Sfrya 4-a.e. za Tolke 212
表すく工方にそらない。
(2) 以一可精合事数的扩张空间下银形空间2"、写像
f >> Stop.
१७ सिहार १ के हैं ।
(3) fp" 以一本質的 = TAR (y-essentially bounded), 1.e.,
ν Filing Leaf 7 τη βαρ (βαρ) = int { apt flas : ωεΩ-N], NIT μ- 3 Δ < ∞
1 以一本質的上限(以一essential supremum)

- 37 NO.	2
Tobre fry- DATO 2	-
Say ≤ 4-essarp (f(ws) · NyH(E)	
4) 5节以一可横分形的不全横分于以内及上空可算的运的	
(5) friy-1078678ins lim Sdy=0. \frac{1}{ \psi (\mathbb{E}) → 0} \text{F} \text{F} \text{O}.	
(6) T:X->YI不界限形作的素上了3. 2019	
Ty: A -> Y defined by (Ty)(E) = T(y(E)), E& A	
17. CI成于大公司企业工作人。8513都国山村CIA 712. TIT.	
Ty-可積分i	
T { Stdp = Stdttp)	
T. 121/29. A	
(記用) (1): 3frs, 5grs/10 宜養5.4 a (i). (ii) 2 南下了 A一可倒在单图	A 5
とする。このとう、存在の日本では、 5mmy と 5mmy は 同じ福電 収集することをすればらい、 ろこご	} (=
Tr (w) = { fn(w) - fn(w) if } fn(w) x & fn(w) x = f(w) = fw) = fw) nd	· · · · · · · · · · · · · · · · · · ·
o otherwise	
ETICE. JXTA D-D # BUED.	

 $\overline{}$

 $\overline{}$

NO

$$\Omega_2 = \Omega - \Omega_1 \in \mathbb{R} < \epsilon$$
. $\|\psi\|(\Omega_2) = 0$. $Z = 2$: $h_n = \sum_{k=1}^m d_k \chi_{E_k} \in \mathbb{R}$ $\delta \epsilon$.

$$\sum_{k=1}^{n} dk \mu (EnEk) = \sum_{k=1}^{m} dk (En(\Omega Y \Omega 2) nEk)$$

6:34°

$$\|\psi((E_D\Omega_2)nE_R)\| \leq \|\psi\|((E_D\Omega_2)nE_R) \leq \|\psi\|(\Omega_2) = 0$$

Tonz

$$(*) = \sum_{k=1}^{n} dk \, \mu(E \cap \Omega) \cap Ek$$

	39
上上同じ理由党	NO.
Study = Study, Study = Study En Di En Di E	\
ETOB. 622. Shady - Stady-Sandy.	
3: JEBN. SENDY & SENDY (187)	X 2) 114 42 \$ 38 a 2"
(ि गरिंपिकार शैस्विहि वाप्टें अधिकर्ण वि)	of Shinday EXz'
711日中東下3.	
0: Johns. control measure, Vitali-Hahn-Sak	2000年,Egorova 定理を用112
JEMES DE MI- ÎTTE CONTROL MEASURE E	73. ~ Mrs 12-可测173
平内数7602. 命题5.3 (4) 81. 圣m=1,2,··	· = 🕏 [2.
$\lim_{\lambda(E)\to 0} \int_E h_n d\mu = 0$	(*)
アとてる。か2.③と(*)とり、不宜積分のもりらい	nge 318 Vitali-Hahn-Saks
○定理(定理3.3)の历堂の条件を満下了azi	
一種i表。 Zhrì ∀€>0, ∃8=8(€)>0;	
EEQZX(E)<8 Teire and Small	< E (*)
\ ETO8. TRE Egorov a \$\frac{1}{2}\$\frac{1}{4}\$\left[=8'), \frac{1}{4}\delta\delta\right] > 0 =	\$\$ 12.
Should for the same of the form of the for	(re-(3) 8 co (3)

-: 9(= V
1924. Stady & Sady 15. (E) (75) PEICH 2# 73-26 7:547=. \$02
The n well-defined 2 de ?
(2), (3), (5), (6) 0 证明,
(7): Ma control measure & 7 = of (A) & 786. lim 1411(E)=0
FERALEN. (FU)(E) = lim GnW(E) for all E&A 228.
了这是fry 15. 单序放fra 不定接合Tanzi. 命题 5.3 AD a 不等式E
lim 4 (E)=0 E) lim (fnp)(E)=0 6" 78 hr. 2 fnp18
7-連続とTo3. Pzr Vitali-Hahn-Saksの定理(定理3.3)にもり、
Sylv. ETAD27565ETE3 D
(5.6)室理 fn, f: D-> Rn A-可测, fnny-可称; fn-> fy-a
Endque D uniformly for $M=1, Q, \dots$ $ q (E) \Rightarrow 0 E$
Tini fn y-可精命2"
Say = lim Sndy for all Ee A
$\sum_{i} V \rightarrow \infty \sum_{j} E_{ij}$

CCOP Filing Leaf 7mm - 35-

——————————————————————————————————————
記明a Teals 次a 技術的有滿里 主準備可多
(5.2) 福租. Re (本(A) ETS. 39~10 A-可测单的数到, for A-
可到(本文: 如) f in >-measure, i.e. \$ E70 17 第112
1 = ([3≤ cω)-f(ω)-f(ω) ≥ ε]) < ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2"表的下了。 Take "Pa20a条件を满面 A-可测单度数到分份格容品的:
(i) fn -> f in 2-measure
(ii) I for (wi) ≤ 2 f(w) for all w∈ D and all n=1,2,
(ETA) 35 CZIZA A FILOZIEF (ALG)
IREA = Sqmks, = Ex - 0. = Ex e A with > (Ex) -> 0;
1 gn/ω) - f(ω) < εκ y ω & Eκ.
·) In → f.in A-marame Toaz : 4 8 >0 1= \$\$12
$\lim_{\omega \to \infty} \Re \left(\Re \omega \cdot \Omega : \Im \omega - \Im \omega \right) = 0$
Zh中: 月然教から及る冬春草間頂から M1< M2<・・・かること
$3\left(\S\omega\in\Omega: \Im_{\mathbf{k}}(\omega)-\Im(\omega) \geq \frac{1}{k}\right)$
Eziss. Zzi εk= /k. Fk= fwεΩ: /gnp(ω)-floo)≥ to s & Antitin *
$\int_{\mathbb{R}} (\omega) = \int_{\mathbb{R}} \{m_{\mathbb{R}}(\omega) + \omega \} = \int_{\mathbb{R}} \{m_{\mathbb{R}}(\omega)\} > 2 \mathcal{E}_{\mathbb{R}}$ of therwise

と雷ce、春年の 10-可測を車両数2ある、ろから、Cioti面です (i) (se. fr -> fin >-measure) a FIAI: · W& Ex 60 / /mp(w) >28ka Thora 1 fe(w) - f(w) = 1 gnp(w) - f(w) < Ex · w & Fr 100 | gnp(w) ≤ 22 k a Thom 15(ws) = 15(ws-9mp(ws)+19mp(ws) < Ep + 2Ep = 3Ep : |fr(w) - f(w) = |f(w) < 38k 1XL, 22a相合合内的。 ω € Ex Tahri / fx(ω) - f(ω) < 3 εk :. 3 we D: |frew -f(w) = 3 Eng C Ex · lim > (queD: |fr(w)-f(w)| = 3 Ex) = 1 (- x(Fx) - 0) Z=2 4 8>0, 45>0 E (B) 12: Ep->0 Traz = 1ko; k = ko Tinti 3 ER < E to) (SWED: | FRIW) - FIWO = 3 ER 5) < 8 Eziss. 1/21- fr -> f in >-measure * (i) (i.e. If ww) = 2 | f(w) fn \ w = 12, \ \ R = 1, 2; ...) or \$2 A : · w & Er FET. Ignr(ws) ≤ 2 Er a Thor? $\int k(\omega) = 0$: $|\int k(\omega)| = 0 \le 2.|\int k(\omega)|$

NO.	44
· W& Ex +> 13mx(w) > 28x a Thin	1
$ f(\omega) \ge f_{n_k}(\omega) - g_{n_k}(\omega) - f(\omega) $	
> 19nx(w) - Ex > 19nx(w) - 19nx(w)	
= Igneral = Iferal	
: \fo(w) ≤ ≥ f(w) /	
1×上空和野《註明》中31下口	
第195.60 1791·	
REDIE DE: BEM.	
= 5R>O; Ee A to Myll (E) < 5R Toint	
$\int_{E} \int_{M} d\mu \left(\frac{1}{2k} \left(m=1,2,\cdots \right) \right)$	<u>a</u>
$\frac{ f_n \lambda n^*\mu <\frac{4}{2^k}(m=1,2,,\ x^*\ \leq 1)}{E}$	(2)
$ \frac{ f_n d x n = f_n(x n) (E) \leq 2 \exp f_n(x n)(F) }{ F_c E} $	
Rodon-Nikodzina 279 E QE	
$= 2 \sup_{F \subset F} \left \int_{F} f d\mu d\mu \right \leq 2 \sup_{F \subset F} \left \int_{F} f d\mu \right \leq \frac{2}{2^{\kappa}} <$	4 2k

COOP Filing Leaf 7mm×35¹√7

NO.	<u> 46 - </u>
7.2 KEDITE STRTONZ S Strady (175 X a 1/2 a Canaly 51/6 To3	\ \{ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
42 \$ 3 3 25 8 18 4 - BIBN ETES - ETT	
Dosin: 不是的从一可静命Too2、在一可的草食数到000	-a.e. 2a 73/B
E12表为3. Zhr)2 福租5.7 BU Egorova 定理EM (部的)E	发之小内")
司ge: A-可用单数, ヨAREA with ス(AR) < Ne;	
Ife (w)-go (ws) < to for all we D-AR	(5)
19rcws ≤ 2 frcws for all w + D	(6)
৮	
(理由: fr: 7-a.e. 2: 42東なり一可的で本部でくちばかします)	38
500 - 12 in J-manue & 73. 702. For 3 manual - 1 = 1 (10) (10)	· A-0100
() () ()	
(i) grand - measure.	
(ii) $ g_{k}^{(i)}(\omega) \leq 2 f_{k}(\omega) $ for all $\omega \in \Omega$	
(i) M. Syling a \$3650 Squis (in) 7 ELS: ge > fr x-a	.e. ŁŹŹZ.
Mir Egoror a DIDM. = jo = Ao E A with > (Ao) < 1/k.	y
15k(ω) - g(x60)(ω) < zk for all ωε Ω- Ao	
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	

$$B_k = \bigvee_{i=k}^{\infty} A_i \quad (k=1,2,\dots), \quad B = \bigcap_{k=1}^{\infty} B_k$$

と者(E. 11/11(B)=0

7 (Ai) < Piz Tonzi Hyll (Ai) < Si

コン Be 1 13 Toazi 11411(·) a 単調到的車続性(命題1.13)に別

Ir. WE D-BETE

Zhr/2. (5) 81.

ここで fe 18 f に >-a.e. ごりまするので上するり、 ge 18 f に >-a.e. ごりますること

· 次上、春Ee Ale XII2. Shady by Xi 4x東することを示す

$$\left\| \left(\int_{E} - \eta_{E} \right) d\mu \right\| \leq \left\| \left(\int_{E} - \eta_{E} \right) d\mu \right\| + \left\| \int_{E} \int_{R} d\mu \right\| + \left\| \int_{E} \int_{R} d\mu \right\|$$

$$(76207171) \leq \frac{1}{2R} \|y\|(\Omega) \qquad (5)$$

$$\leq 2 \cdot \frac{4}{2^k} = \frac{8}{2^k}$$
 by (2) :) $\Re(Ab) \in \Re(a2)$

$$\left\| \left(\int_{\mathbb{R}} \left$$

$$\left\| \sum_{n=0}^{\infty} (3^{n} - 3^{m}) d\mu \right\| \leq \left\| \sum_{n=0}^{\infty} (3^{n} - 5^{n}) d\mu \right\| + \left\| \sum_{n=0}^{\infty} (3^{n} - 5^{n}) d\mu \right\|$$

$$\leq \frac{2}{2k0} \left(\| \gamma \| (\Omega) + 9 \right) + \frac{1}{2k0} \left(\| \gamma \| (\Omega) + 2 \right)$$

今銀1.11さのハラトル側度の垣板の、下原集合とてることを示してが、東路につるいと確く、相対路コンハント集合とてることが小かる。

(5.4)全理 (Nishi)以: A-> X 18 Nishi)的意思。

このとき、R(4)= {以(E): Ee Byrr Xa和对弱コンハント集合と下る

(FEA) SE 40 control measure ETS.

 $Tf = \int_{\Omega} f d\mu, \quad f \in L_{\infty}(\Omega, \lambda)$

一个15 7-本質的上面不可以 N-本質的上面界上738a2、冷觀5.5(3) M 个15 N-可理合ETO1、石江本類合作石石下8

と書くと、T: La(X)→Xn 有界報報でする。 てるとろ、それをXに対に

$$x^{+}Tf = \left(\int dx^{+} \mu \right) = \left(\int \frac{dx^{+} \mu}{dx} dx \right), \quad f \in L_{\mu}(x)$$

p. Pars. 25.

$$\int_{X^*} = \frac{dx}{dx} = \mu_1(x)$$

18. 9th a 21=12t3 Radon-Nikodym #5022t3. 2012 : Ra O, Qti.

の T: Lx(X)→Xn c(Lx,Li)をc(X,X*)に関い種類

② R(y) C 3T(t): f∈ Ln(x), 19 ln ≤ 15

	52
Oantes: fa-of in o(Lo, Li) Ets. Jars. Ante XI = xt	ilz (*) 89.
$x^* T f_a = \begin{cases} \int_{\Omega} g_{xx} dx - 3 \\ \int_{\Omega} g_{xx} dx = x^* T f \end{cases}$	
:. Tf, >7f in e(X, X*) *	
QaBAA: YEEQHXIZ. XEELW(X) 2" 11XElm ≤1.	
> \(\(\mathbb{E}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) \(<
Sz. Barrach - Alapplue a EIR 1= M. & felo(x), If I to \$14	<u>r</u>
6(1m, Li) + 12 12 12 19 + Taz" D81. {T(+): f = Lm(x)	
17 0 (X,X*) = 12 12.]=105/ET63. 72=@1=81. R(p) 10 0	
1: 12 12 TEXTICITE D	
· · · · · · · · · · · · · · · · · · ·	
s .	

CCOP Filing Leaf 7mm + 35*1

86 NOTH 測度 正則性

この多され、定相空的上a NiShu-創度に対い種々の正則性を事入てる。

为市、己的公正则性内实际的家军倒费。正则性之利定232828下方。

(6.1) 記名.

S. Haushor FED

B(S): Sa Borel集合やら成るの一集合体, i.e., Sa open sate を Jinz 含む

最小のの一条体

Q·Sa库接合全体、了一只apped全体、X=Sacinsh集合全体 X:实Bamble的、X*:Xaccompanies

16.2) 京義(種20正則) 以: B(S)→ X 17 N'3トルー創度とする.

(i) MIT IST (negular) 20, 4 E& B(B) = \$812.

3 Fe F with FCE; 1411(E-F)< &

(ii) 417 Radon & 4270, 4 Et B(5) 1= 2012

= KE & with KCE; 1411(E-K) < E

(iii) UN I-IAI (T-smooth)

Jim 11 411 (A-Ba) = 0

NO. 54
(6.3) 命題 4: B(ら)→×ro Nづけい 通徳とする
(i) yp: 正則 会 Yx = X* = 教12 x y b 正則, i.e., YE>O, YEeB(5)
1=2812 = Fe F with FCE; x*u (E-F) < 2
(ii) µ to Radon € \ x * € X = \$\$12 2 to to Radon, i.e., \$2>0, \$ E ∈ B(\$)
1= \$312 = KE & with KCE; x*41 (E-K) < E
(iii) 以书了一正则会》 ∀x*e X*12 X*以为了一正则, i.e., 任意《草韵
· TAT net & Gal C B with G = U Gal= 文812
lim /x*y/(B-Ga) = 0.
(1241) ODI=DIS: (A) AEN AEE BRO, AX*E X* E BRE: DAFE
= KE X with KCE; 1411(E-K)< E/(11x*11+1) E2×3. for.
$ x^*y (E-k) \leq x^*y \cdot y (E-k) < x^*y (\frac{\epsilon}{ x^*y +1}) < \epsilon$
$(:) \leq x^* \cdot \frac{x^*}{ x^* } + (E-k) \leq x^* \cdot x^* \cdot x^* = x^* = x^* \cdot x^* = x^*$
Mile. 8th 17 Radon.
(今) 系3.7 811. M= f 9t u: 1/211/51 (TO CA (BCB)) a 相对肠底51
了小外集合过去了。 X*a A单位珠 Bx* 过表了:

主语. 4 270 1=初12.3 xx,..., 就50 Bx*, 3870;

1 x*4 (E) < 5 (i=1,8:.,n) Tobro (x*4 (E)) < & final a*e Bx*

:) DE (In E 1886.

Yzte Bx* ε (\$)\$: S= = = ETi'ce. (*) M.

∃ E, ∈ β(β), = 12 € Bx; | >0 4/(E) < \frac{1}{2} β> | 2 1/2 €.

Tr. Sot, d2 & S = 1 / 2 / 12 / 87

= E2 € B(B), = x* ;

 $|x_{1}^{*}y_{1}(E_{2})| < \frac{1}{2^{2}} + |x_{2}^{*}y_{1}(E_{2})| < \frac{1}{2^{2}} |y_{2}| + |x_{3}^{*}y_{1}(E_{2})| \ge \varepsilon$

777五十二年3千年0二

= 1 xx 5 C Bx+ = 3 Ex 5 C B(S);

| x* y (En) < \frac{1}{2n} (n=1,2:..,n) to | xn+1 y (En) | 2 &

6278

为2. 另就以了的Ma底别2:(百定的, Mn 相対弱点到コン1951下a2"

了城北水,弱炮车了3部分到主力、部岛主省车1=可3T=故1=, 了2本以为

里的弱级东西全下。

 $\lambda_0 = \sum_{j=1}^{\infty} \frac{1}{2\delta} |\alpha_j^* \psi|.$

Fixe. $\lambda_0 \in \text{cn}(\beta(S))$ i. A singut. No- $\mathbb{R}^{\frac{56}{16}} \in \mathbb{R}^{\frac{1}{16}}$. It. I singut. Banah $\mathbb{R}^{\frac{1}{16}} = \mathbb{R}^{\frac{1}{16}} =$

| BE(X) = | X(E) = | X(G) = | XII, Rea(B(G))

Toazi 百界 for 星EE (ca(BBD))*、 YEI- Schyy to BB 中事

JX上M. Vitali-Hahn-Salesの党理にもり

. $\lim_{\lambda_0(E)\to 0} x_n^* \mu(E) = 0$ uniformly for $n=1,2,\cdots$

7.7.

 $\gamma_{0}(E_{n}) = \sum_{b=1}^{\infty} \frac{1}{2b} |\alpha_{i}^{*}\psi|(E_{n}) < \sum_{b=1}^{\infty} \frac{1}{2b} \cdot \frac{1}{2^{n}} + \sum_{b=n+1}^{\infty} \frac{\|\psi\|(E_{b})}{2^{b}}$

2n (2) + Hall (2) (2) 1 2d

= 1+11/1(3)

		57
	NO.	,
	· · · · · · · · · · · · · · · · · · ·	
	/	
· · · · · · · · · · · · · · · · · · ·		
·		
	<u></u>	

coop Filing Leaf 7mm + 35r²

NO. So (En) -> 0 as m-> m. Zhypi. lim sim $\mu(E_n) = 0$ uniformly for $m=1,2,\cdots$ 8-36° , Thr. | xm+1 4 (En) ≥ € > 0 (m=1,2,...) 1= BT3 × (中)a記用を続ける: YEOUE 国宜: Sat.... またらCBX, 5>013 (主語) と同じするとする、 Fe B(写)を国生、 万室町、 春文水(i=12:-,n) to Radon Too? = Ke & with KCE; max | xin/(E-K)< 8 6253. 7-2 Ae RIS) with AC E-K1=\$712 max /21/4/(A)<8 (18 (1967) 2013 | 2*4 (A) | < E for all 9* E Bx* 122. | x*μ (E-K) ≤ 2. smp | x*μ (A) | ≤ 2ε for all x* ∈ Bx* 11411(E-K) = emp (x*4)(E-K) ≤ 28 M21. MIE Radon & To3. (前) (前) (前) と同様に12寸せる (=) 4=>0, 4= 6x4Cq with Ax1 G = 122: 3xt, ... xt4CBx E

5>0ほ(主張)と同じとする. 5度別 各は"(i=1,2,...,n)はて一正則でので、 |x*μ | (A-Ba) → 0 (n=1,2,...,n), fo2. 3 > (4- A) | Mik max | Sity (A-A) < 8 6253. M2F. A∈B(B) with ACA-Bal=\$812. max | xtyl(A)<8. とでる for (主張) M. | 2* u(A) < E for all 2* E Bx*. Mir 220 Tobits | x*p | (β-βα) ≤ 2 smp | x*p (A) | ≤ 2ε for all x*ε Bx*.

AC β-βα : | | | (G-Qa) ≤ 2 2 ETOS for Sim Myll (G-Ad)=0 p. 7-34E 16.42-注意上。命题1287、1727上测度。種20正则经上到1218 王值,有限测度《棉合上同门带果的 成位了江南州分子。

			60
		NO.	; ··· • •
			
		/	
	· · · · · · · · · · - /		
·			
· · · · · · · · · · · · · · · · · · ·	<i> </i>		
· · · · · · · · · · · · · · · · · · ·	<u>/</u>		
	<u> </u>		
/			
			Sign.
	<u> </u>		
	À.		
7			-
	,	\	
	к.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		*	·····
₩			
······································			
		47	

電力 弱コメックト作所の表現(Riesz-Kalataniaを理の正確)
この最後の多され、バントル連携の理論の作時論への重要で貢献の一つさるるBartle-Danford-Schwarteにる弱コンパントト作所する表現全理を紹介である空間にコッパントを向与上の連続に数全体からでるBarradaを用のは多り上の有限部での表現定理を12万名で、Riesz-Kaleutaniの空理の正確であり、弱コンパット・介の素丁:に(ら)→×か、Barradaを向×に値を230、弱コンパット・介の素丁:に(ら)→×か、Barradaを向×に値を3。この空理におり、その位質が調がたいいった弱コンパット・作の素の解明が飛やくららに進展により、その位質が調が

rca(分): B(の)上z 魔がた正断で車首を作る (2.1) 記号 (3.1) 記号

S:コンパット Hausdoff空的、B(S): Sa Barel集合的でるの一集合在 C(S): SLi 宝春が作車数値車請用数全体の作3 Banada的

with If I'm = sup If Is)

X: 果Banal 空的, X*: Xa 2R对空的, X**: Xa 才2R2R对空的 Y: Ya , Y*: Ya , , X*: Y ,

(7.2)復程. T:X→Yra 面界結果作用業とする. Bx ra Xa 序单处理とする
(1) Ta 又又対作用素 (dual operator) T*: Y*→X*ra

 $\langle x, T^*y^* \rangle = \langle Tx, y^* \rangle, \alpha \in X, y^* \in Y^*$ 下南下了不服银下月季212宜美水,1丁*1=1丁11下南下了、Sinc T*: Y*→X*n.弱症和の(Y*,Y),の(X*,X)に的い真稀である. (2) T a 第9次又文7个印章 (Second dual operator) T*: X*→Y*18. $\langle y^*, T^{**} x^{**} \rangle = \langle T^* y^*, g^{**} \rangle, g^{**} \varepsilon X^{**}, y^* \varepsilon X^{**}$ 生满时有界积形作所是112 图表外. 117 11=11711 = 清陆了了小上 デキ: X**→ Y** n 弱電面の(X** X*), で(Y** Y*)に関い連続 2 128. 7 T. T. Ta Ta Ta TE 1= Toozing, Le., $T^{**}(\chi(\chi)) = T_{\chi}, \quad \chi \in X$ ・Sをこんなる町で然日の*X C-X:X 1ヨー (3) Tn BBJ:142+ (weakly compact) (T(Bx) a BB(EAB c(Y, Y*) (二) 13 (大) - compact 2 23 〈弱江水分作两季。《柱質〉 多果代以上便為絕依肝生合果有下口一个代以上解对了(i) (= 相対弱 1>1/5/集台) 上移す (ii) Tti弱了:11分 每 T**X** C 文(Y) (ii) (Aantmacher) Tが弱了ンパント (コンドラト

(4) Tt コンパット (compat) 会 T(Bx)の714 (定相にある)かとが ての
)114(定相にあるコンパット集合

くコンパットケーの素の性質つ

(iv) (Schauder) Tp: 2:1191 (> T* b: 2:1191

以上: 过八下事实。註明内阁之时, [6, 482-487][夏息.

(7.3)全理(Bathe-Dunford-Schwartzの表現全理) T: C(ら)->X
は 局コンパットノを内靠とする、このとの、上X下の(の)-(め)を満ますハットに関す
リ・ロ(の)- Xヤーで下上っ存をする:

- (a) 春中天 X 1= 対12 X 1= x rca(分), 3h 72 grt Radon
- (b) Tf = Stap for all fe (15)
- (a) ITI = 1/11 (b)

(a) $T^*x^* = x^*y$ for all $x^* \in X^*$

立た、4、10分→×10、10を両下すハットル復慣をすると、10に10で食物は、1年の素丁: C(分)→×10 弱コンハットで、10を10を両下す、

(註冊) 復習7.2 (前)目別

T** C(X) < ×(X)

 $\gamma_{x}(E) = \phi_{E}(\gamma_{x}) = \phi_{E}(T^{*}x^{*}) = \langle T^{*}x^{*}, \phi_{E} \rangle$

 $= \langle \chi^{\dagger}, T^{**} \phi_E \rangle$

 $= \langle x^*, \varkappa(x'(T^*\phi_E)) \rangle$

= (x1(T** \$=), 5*)

= <4(E), x> = xm(E)

 $\int_{0}^{\infty} d^{*} y = \int_{0}^{\infty} x^{*}$

 $\binom{2}{2}$

ここ Serena(ら)Tooz styena(ら)、 shro 行意の外をXを対ける

かErazi、官理2.3に別、以内)以上に関いて見からはあ (i.e. ハラナル)個

28) (1), (2) M (Q) E (B) E TAET.

的: 香午已的17 不好的日的一可图15m2". 命题5.5(3)1=81. \$13

N-可積分: 100等式の方池の積合の存在する、芝山に、サガモX*、サモCLS)

1= \$112

 $q^*(Tf) = \langle Tf, \eta^* \rangle = \langle f, T^* \eta^* \rangle = \langle f, \eta^* \psi \rangle$

 $= \int_{\alpha}^{\beta} dx \psi = x^* \left(\int_{\alpha}^{\beta} dy \right)$

となる. 上式は人生意の水を×に対けて成り至つので

Tf= Stay

NO.
505 Goz (B) to BNZO.
(a): T = smp Tf = smp x*(Tf) = smp smp flx**/
Smp 4*pl (分) = 1/pl (分) = 1/p
(才3段) 直面配用:以:B(G)->Xro(Q)·南西下的上腹間とする。
TOKE (b): 官義以份作用第丁: C(\$) -> X # 有界积形 とてることの 布理 5.5(3)
81 PAit: 102、Tが弱コンパクトではは、から間ですことを示す。
(3): (艾)物(3)或证明上全同じ。
(的: x*e X*E 面定: 多fe C(S) = 第12.
$\langle f, T^* g^* \rangle = \langle Tf, g^* \rangle = \langle f, g^* \psi \rangle$
8-2. T*x = x*y. ETo3. 1/21- (D) + 5025.
Tri 弱コン1951=23-22: Bx+ E. X*a 丹準定式とする.
(d) 8M. T*x* = 9ty. for \$ 2 to 2.
T*(Bx+)= faty: 11x+11 & 15 C ma(6)
とている。 デュリカ Sytu: 11か1 514 m ma (5) a 和知路はらりついいまま

とてるのだ、て*: X* → ははかは弱コンパットとてる、ヤシト、復習7.2(111)をり

丁、には)→×は弱コンパラトと下る。

一意性的的网的的,以上这有的20克里的中央31下口

(2.4)学基、新定理a Nishil 創度以acti. 丁主表現了3 Nishil 創售という

(7.5)空理 T: C(S)→X18 积积下下的东上下。 Zaks. Tra

200年中的面:

(1) T. 18 compact

(2) TE表現TSNSHI的價以內值域n Xa相对コンパット集合

(FEA) (1)=(2): TEcompait & To. To neally compail 2 + 2802. THC(5)*C 2000)

芝、宝蚕7.30证明《71级图》

4(E) = x-1 (T* \$=), Er \$45)

で与えられる。これで、子中: Ee BCSJIn CCSJIn 不管をでする

(2) | \$\left(\delta) | = | \(\delta(\text{E}) | \left(\delta) | \\ \delta(\text{E}) | = | \(\delta(\text{E}) | \left(\delta) | \\ \delta(\text{E}) | = | \(\delta(\text{E}) | \left(\delta) | \\ \delta(\text{E}) | \\ \

· 1/21/21 : 1中: Fe BISDI 17 TRAPAX

THE compact Toaz 13智7.2 (10) E11. T*: [[5] -> X** + compact z 表3.

Per Hatan

SylE): Ee B(B)] = 27 (3 Tmp=: EeB(B))

15不了合果一个15个区域下。

(1) (1):

18 人の全有界集合となることをすっせれてある。

· BEC(S) a BARCATEL

EBCE. B. >B

1) 4620, 4 fe BEEN ES: 2063. 11 11 51 2 for BCD- BIBLTONZ

B1号-可順車動象f= = ZorXEx が存在12 11f-f=11/10 < E とされる.

=== fe Bo z to. Pir fe Bolton. BodB & Trante *

かりますまであるいうけい的度とし、丁子= Stdy, fn StamBonel可的全部とすると

THE THE STEP THE THE SU FER (B) ETTS FOR TOBOCTOBOCTOBO.

TOBO=KTORY TOBOCK ETIZ. FOR KRIFTARETIZER FTHIS

下中的原理、这种意、TCBDITXXX中域了小以外表上下以、作用意、Ta

コンパットトキャガグラ、

(\$2般) Ka全有性a 註明:

M= IMICS) < DETC. Y 2 > O E TETE: FRENT-1, DE TE EM BYLLSC

$$= \frac{\varepsilon}{2M} \left\| \sum_{k=1}^{\infty} \frac{2M}{\varepsilon} \left(d_k - \beta(a_k) \right) \mu(E_k) \right\|,$$

$$\leq \frac{2M}{\epsilon} \cdot \frac{\epsilon}{2M} = 1 \quad (k=1,a,...,n)$$

$$\leq \frac{\varepsilon}{2M} \cdot |\text{MI}(\beta) = \frac{\varepsilon}{2M} \cdot M = \frac{\varepsilon}{2}$$

$$\beta(\alpha) = \beta(\alpha) = \beta_3, \ \beta(\alpha_3) = \beta_1 \gamma \beta \beta$$

$$\beta(\alpha) = \beta(\alpha) = \beta_3, \ \beta(\alpha_3) = \beta_1 \gamma \beta \beta \beta$$

$$\beta(\alpha) = \beta(\alpha) = \beta_3, \ \beta(\alpha_3) = \beta_1 \gamma \beta \beta \beta \beta$$

@ = f. p(5)-10 10 (1) for all se 9.

O suplifuling on

1) Oleonz: 3fog 18 Bo Condy 5/1002" BB (C(S), C(S)) 1=12/12 那是不多。一样不是全理的。如果们们的人的。 DEDNZ: Rese SI=対17. Diracime Se e reals)=Clas. for 不動M. YESO = No; m, n≥ no 78418 | fn(s)-fm(s)| = | fndSs - SfmdSs | < E Mit. 25 GE GIE \$712 3 for 1954 17 Fitto Candy 51. (22 Top Per 12 to 15 15/12)2. fn(s) -> fo(s) for all SE & ETO3. >22分fn10 B(S)-可图TOAZ: fo = B(S)-可图ETO3 ※ Mit. Dominated convergence theorem (\$125.8) M. T(fn) = fndn -> fody EX 502 STGfnyn. X0)1442\$5/ 6708. 维辛本主張在訂明: MCC(G)主弱コンパント集合とする。T(M)a中から、 SE意识范别 STifoStiE ES. Eberlain-Smuliana 全理的. Mn 弱点到20195十 Tonzi StateMit Ma果素folo弱物理的部分到多fareSEto. 602. 定理7.60証明と同様に12. T(fm)→T(f) (Xa)142)が示せる. アミト、ミナチンシス・エCMDの要素にフルムや東する部分でしていていますので、

TMDr. Xのコッパットま合となる

最後上面系统作的素丁:以的→X的类型とで	SEXWATTE PAIL2
この講義を教えることとする	
(7.2)京美 T: X→ Yn 不解那个个的亲 とてる。	
T p'] = (nuclear) = = = = = = = = = = = = = = = = = = =	Y with 2 112/11/11/11/11/20;
$\int x = \sum_{n=1}^{\infty} x_n^*(x) y_n,$	216 (*)
ろれ、ての教型)114を、次のもうに全まする	
17 1/muc = inf { \frac{5}{2} 1 \tan 11.11/n11 },	
I. Puls. 8th 8. 8 15 10 (1) of 15 T. or fine 15-7-	節かけたとうの下でさるる。
(7.8)字理 T:C(号)→XI不熟形作用素	£ 78. Zars Ma 27a
条件n.同体:	
のTn 核型	
(2) T王表现于3月3月11日11日1111日111111111111111111111111	金書即一個日本
Rodon-Nikodým #30 J= dy/d/y/17 B	ochner 17 to 2 to 3.
= a12. Tllnuc = 141(B) = [181d]41	
5	