令和6年度 教科研修会 I に向けた授業の構想

数学科

1 数学科の研究テーマ

数学的な表現を用いて事象を簡潔・明瞭・的確に表現し、

考察する力を高める学習の在り方

2 数学科として育成を目指す資質・能力の受け止め (研究テーマに示す力が高まっている生徒の具体の姿)

・問題解決の結果や過程を振り返り、統合的・発展的に考えている姿

(3学年、「A数と式」領域)

- ・見いだした図形の性質を基に発展的に考察し、その結果を統合的に捉えている姿 (3学年、「B図形」領域)
- ・関数として捉えられる二つの数量について、変化や対応の特徴を見いだし、表・式・ グラフ等を用いて表している姿(全学年、「C関数」領域)
- ・調査する標本の抽出方法、アンケート調査の質問項目、アンケートの実施方法を検 討し、評価・改善している姿(3学年、「Dデータの活用」領域)
- ・問題解決で得た結果を問題に即して解釈している姿(2学年、「A数と式」領域)
- ・定義や定理から新たな性質を予想したり見いだしたりしている姿

(2学年、「B図形」領域)

※1学年では、これらの資質・能力の土台となる部分を身に付ける。

3 小単元名・学年 「式の計算の利用」・3年

4 小単元の概要(全4時間扱い 本時は第3時)

小単元の学習問題

式の展開や因数分解を使うとどのようなことができるのだろうか。

小単元展開

	時間	学習活動			
前小単元	第1時	◆単項式と多項式の乗除の計算をする			
	\sim	◆簡単な一次式の乗法の計算をする			
	第7時	◆乗法公式などの公式を用いる簡単な式の展開や因数分解をする			
	第8時	◆小単元の学習を振り返り、小単元のまとめをして、次の小単元の学			
		習問題を設定する			
		【小単元の学習問題】式の展開や因数分解を使うとどのようなことが			
		できるのだろうか。			
本小単元	◆式の展開や因数分解を利用して、問題解決をする				
		【学習問題】色がついた部分の面積が大きいのはどちらだろうか。			
		【学習課題】それぞれの正方形の面積に着目して、予想が正しいか確			
	第1時	かめよう。			
	\sim	【学習問題】「連続する二つの偶数の積に1を足した数は、奇数の2			
	第3時	乗になる。」このことはいつでもいえるのだろうか。			
	(本時)	【学習課題】二つの偶数を文字で表して、予想が正しいか確かめよう。			
		【学習問題】円形の道でも $S=a\ell$ が成り立つのだろうか。			
		【学習課題】円の面積の差や周の長さの考えを用いて S や ℓ を表し、 $S=$			
		aℓ が成り立つかを調べよう。			
	第4時	◆小単元の学習を振り返り、小単元のまとめをする			

数学科学習指導案

令和6年5月15日(水)5校時 3年B組教室

授業学級 3年B組(40名) 授業者 金子 智

1 小単元名 「式の計算の利用」

- 3 小単元の学習問題:式の展開や因数分解を使うとどのようなことができるのだろうか。
- 4 本時の位置(全4時間中 第3時)

前時:連続する二つの偶数の積に1を足した数が、奇数の2乗になることを説明した。

次時:小単元の学習を振り返り、小単元のまとめをする。

5 展開

	区(用		let let Habita et et let	-1
段階	活動	予想される生徒の反応		時間
	1 学習問 題 し、学習課 し、を 題 る。	T 一直線の道の面積は、縦×横で求められる。縦の長さは a で、横の長さは ℓ だから $S=a\ell$ と表せる。直角に曲がる道も切り離してつなげれば一直線の道になるから、面積は一直線の道と同じで $S=a\ell$ と表せる。		8 分
7呆	学習問題:円形の道でも $S=a\ell$ が成り立つのだろうか。			
入		イ 円形になっても <i>S</i> = aℓ は成り立つと思うが、どうやって確かめればよいのだろう。ウ 道の面積 <i>S</i> は、外側の円から内側の円を引けば、求められる。内側の円の半径を文字で表せばよさそうだ。 エ 中央線の長さℓは、円周と考えればよい。	要か問う。 ・ウ、エのような発言を基に、 内側の円の半径を <i>r</i> として、	
		学習課題:円の面積や周の長さの考えを用いて つかを調べよう。	S や ℓ を表し、 $S = a\ell$ が成り立	
	2 S = al が成り立 つのかを 調べる。 3 全体で	けばよいから、 $S = \pi(r + a)^2 - \pi r^2 = \pi a^2 + 2\pi a r $ と表	・追究が進まない生徒には、円の面積の公式や、ℓが半径r +a/2の円の周の長さであることを確認する。 ・全体の追究の進行状況を見	
	道究を 内容を 有する。	カ ℓ は半径 $(r+1/2a)$ の円の円周の長さだから、 $\ell=2\pi(r+1/2a)=\pi a+2\pi r$ と表せる。キ $a\ell=a(\pi a+2\pi r)=\pi a^2+2\pi a r$ と表せるから、 $S \succeq a\ell$ の式が $\pi a^2+2\pi a r$ で同じにな		
展		る。だから、 $S = a\ell$ は成り立つ。 ク 道の面積 S を求めた式である $\pi a^2 + 2\pi ar$	$2\pi ar$ 以外の形の式で $S=a\ell$ が成り立つことを説明で	
開		を因数分解すると、 $a(\pi a + 2\pi r)$ と表せる。また、 $a\ell$ も $a(\pi a + 2\pi r)$ となり、 S と $a\ell$ のどちらも同じ式で表すことができるので、 $S=a\ell$ が成り立つ。	きないか問い返す。 ・クのような考えを全体で共 有し、 $S = a\ell$ が成り立つ理 由を説明し合うように促す。	
		ケ 道の面積は外側の円と内側の円の面積の差だから、 $S = \pi(r+a)^2 - \pi r^2 = \pi a^2 + 2\pi a r$ と表せる。これを因数分解すると、 $a(\pi a + 2\pi r)$ と表せる。 $\ell = \pi a + 2\pi r$ だから、 $S = a \ell$ となり、円形の道でも $S = a \ell$ が成り立つ。	目的に応じて式の展開や因数分解をして、 $S = \alpha \ell$ となることを説明できる。 (観察、ノート)	
終	4 本 時 の ま り 返 め と え	コ 文字を用いると、ある事柄がいつでも成り立つかどうかを確かめることができる。 式の展開や因数分解を使うことで説明できる事柄の幅が広がった。	解決に役立った考え方」、「さ らにいえそうなこと」という 視点で振り返るよう促す。	8 分
末	る。 5 確認問 題に取り 組む。	サ 円形以外の道でも $S = a\ell$ は成り立つのか 疑問に思った。 シ 正方形の周りにできた道でも、 $S = a\ell$ が 成り立つ。	有してまとめをする。	7 分