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The purpose of this paper is to clarify the properties of a coalition-proof Nash

equilibrium in an aggregative game with monotone externality and strategic

substitution. In this aggregative game, every Nash equilibrium satisfies the fun-

damental property that no coalition can deviate from the Nash equilibrium in

such a way that all members of the coalition are better off and the deviation is

self-enforcing. The three different characteristics of coalition-proof Nash equi-

libria are derived from this fundamental property: In this aggregative game,

(i) some coalition-proof Nash equilibrium survives the iterative elimination

of weakly dominated strategies, (ii) the set of coalition-proof Nash equilibria

does not depend on which coalitions are feasible, and (iii) a coalition-proof

Nash equilibrium provides the same outcome as a weak coalition equilibrium,

which is a non-cooperative equilibrium concept that is based on some sort of

farsightedness of players.
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1 Introduction

The purpose of this paper is to clarify the properties of a coalition-proof Nash equi-
librium in an aggregative game with monotone externality and strategic substitution.
Using a fundamental property of a Nash equilibrium in this game, we show that a
coalition-proof Nash equilibrium has three distinct characteristics that have not been
examined by earlier studies in this paper.

The coalition-proof Nash equilibrium is one of refinements of Nash equilibria, which
was introduced by Bernheim et al. (1987). This equilibrium is immune to self-
enforcing coalitional deviations. The self-enforceability of a coalitional deviation is
such that no proper subcoalitions of the coalition can object to this coalitional devi-
ation using their self-enforcing deviations. Hence, the notion of self-enforceability is
defined recursively with respect to the number of members in a coalition. Due to this
recursive nature of coalition-proof Nash equilibria, it is not easy to characterize this
equilibrium and its properties have not been studied sufficiently.

In this paper, we focus on an aggregative game with monotone externality and strate-
gic substitution. The aggregative game is such that the sets of the strategies of all
players are the subsets of the real line and the payoff of each player depends on his/her
strategy and on the sum of the strategies of the other players. Monotone externality
requires that a switch in a player’s strategies changes the payoffs of all the other play-
ers in the same direction. Strategic substitution means that the incentive to every
player to reduce his/her strategy is preserved if the sum of the other players’ strategies
increases. A coalition-proof Nash equilibrium in an aggregative game with these two
conditions was studied by Yi (1999) and Shinohara (2005). Yi (1999) showed that
the set of coalition-proof Nash equilibria coincides with the (weakly) Pareto-efficient
frontier of the set of Nash equilibria. Shinohara (2005) examined the relationship
between the coalition-proof Nash equilibria and dominance relations. These results
were proven on the basis of a fundamental property of a Nash equilibrium. This
fundamental property is that no group of players can deviate from every Nash equi-
librium in such a way that all the players are better off by using their self-enforcing
deviations in an aggregative game with these two conditions. The other aspects of
the coalition-proof Nash equilibrium are also shown based on this fundamental prop-
erty. In this paper, we study the relationship between coalition-proof Nash equilibria
and iterative elimination of weakly dominated strategies, the relationship between the
equilibrium and feasible coalitions, and the relationship between the equilibrium and
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players’ farsighted behavior. These three relationships are clarified on the basis of the
above fundamental property.

As a preparation for the examination of these relations, we confirm that no Nash
equilibrium is Pareto-dominated by any other Nash equilibrium in an aggregative
game with monotone externality and strategic substitution. This, together with Yi
(1999)’s result, implies that the set of Nash equilibria, the set of coalition-proof Nash
equilibria, and the weakly Pareto-efficient frontier of the set of Nash equilibria coincide
in this aggregative game (Corollary 1).

We first show that there is a coalition-proof Nash equilibrium that survives the it-
erative elimination of weakly dominated strategies in an aggregative game with mono-
tone externality and strategic substitution. Obviously, the surviving coalition-proof
Nash equilibrium consists of undominated strategies. As Peleg (1997) pointed out,
a coalition-proof Nash equilibrium may consist of weakly dominated strategies and
may be eliminated by the iterative weak dominance. He also showed that almost
all dominant-strategy equilibria are coalition-proof; thus, such equilibria consist of
undominated strategies. However, since there is not necessarily a dominant-strategy
equilibrium in an aggregative game with monotone externality and strategic substi-
tution, our results present another class of games in which there is a coalition-proof
Nash equilibrium that survives the iterative domination procedure.

We also obtain that (i) every Nash equilibrium that consists of serially undominated
strategies in the sense of weak domination is a coalition-proof Nash equilibrium of
the original game and (ii) the serially undominated Nash equilibria do not Pareto-
dominate each other. We also find that these statements do not necessariy hold true
if an aggregative game does not satisfy one of the conditions of monotone external-
ity and strategic substitution. These results show that the relationship between the
coalition-proofness and the iterative elimination of weakly dominated strategies is
completely different from the one between the coalition-proofness and the iterative
elimination of strictly dominated strategies. Moreno and Wooders (1996) explored
the relationship between the coalition-proof Nash equilibrium and the iterative elimi-
nation of strictly dominated strategies. They investigated a game with finite strategy
sets and showed that if there exists a profile of serially undominated strategies that
Pareto-dominates the other serially undominated strategies, then it is a coalition-proof
Nash equilibrium. In contrast to the iterative strict domination, when the iterative
elimination of weakly dominated strategies is adopted, a Pareto-superior serially un-
dominated Nash equilibrium does not constitute a coalition-proof Nash equilibrium,
which is demonstrated by our examples. Hence, some conditions need to be imposed
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on a game so that a result similar to that of the earlier study holds. Such conditions
for an aggregative game are provided by our main result.

Second, a notion of coalition-proof Nash equilibria with a restriction on coalition
formation is introduced to examine how the equilibrium outcomes depend on which
coalitions are feasible. A restriction on coalition formation is a set of coalitions that
can form in a game. A coalition-proof Nash equilibria with a restriction on coalition
formation is stable against all self-enforcing deviations of coalitions that are in the
restriction on coalition formation. Although coalition-proof Nash equilibria are gener-
ally different under distinct restrictions on coalition formation, we show that the sets
of coalition-proof Nash equilibria are the same under any restriction of coalition for-
mation in an aggregative game with monotone externality and strategic substitution.
A result similar to this was provided by Serizawa (2006) in the mechanism design
literature. Our analysis shows that the phenomenon similar to the one in Serizawa
(2006) is observed in many games that have been frequently studied in economics.

Third, we show the equivalence between the coalition-proof Nash equilibria and
an equilibrium that is based on the farsighted behavior of players, which is called a
weak coalition equilibrium. This was introduced by Ju and Sarin (2009). The self-
enforcing deviation of a coalition in the coalition-proof Nash equilibrium is robust only
to the self-enforcing objections of the internal players in the coalition. However, self-
enforceability does not impose any robustness on the deviations that non-members
of the coalition join in. The coalition-proof Nash equilibrium does not suppose that
players are farsighted either, because members of a coalition do not consider a se-
quence of successive deviations that are induced by the deviation of the coalition,
as Xue (2000) and Ju and Sarin (2009) criticized. The weak coalition equilibrium
is one of the equilibrium concepts that take the farsightedness of players and the
non-internal deviations into account. The weak coalition equilibrium is a refinement
of a Nash equilibrium and the set of weak coalition equilibria contains the set of
coalition-proof Nash equilibria. Hence, the set of coalition-proof Nash equilibria and
that of weak coalition equilibria do not necessarily coincide. However, we prove that
these two equilibrium sets coincide in an aggregative game with monotone externality
and strategic substitution. Thus, equilibrium outcomes do not change even if the
farsighted stability concept of Ju and Sarin (2009) is investigated in these aggregative
games.
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2 Model

We consider a strategic game G = [N, (Xi)i∈N , (ui)i∈N ], where N is a finite set of
players, Xi is the set of pure strategies of player i that is a subset of real numbers,
and ui :

∏
j∈N Xj → R is the payoff function of player i. A group of players S ⊆ N

with S 6= ∅ is called a coalition. Denote the set of strategy profiles that can be chosen
by S as XS ≡

∏
i∈S Xi and denote xS ≡ (xi)i∈S ∈ XS , which is a strategy profile

for S. The complement of S is denoted by −S. For notational simplicity, denote
X ≡

∏
j∈N Xj and x ≡ (xj)j∈N ∈ X.

We focus on a class of games, which are called aggregative games. In aggregative
games, the payoff of each player depends on his/her strategy and on the sum of the
strategies of the other players.

Definition 1 A game G = [N, (Xi)i∈N , (ui)i∈N ] is an aggregative game if
ui(xi, x−i) = ui(xi, x

′
−i) for every i ∈ N , every xi ∈ Xi, and every x−i and

x′
−i ∈ X−i with

∑
j∈N\{i} xj =

∑
j∈N\{i} x′

j .
1

In this paper, we focus on the case in which all players choose only pure strategies.
The (pure-strategy) Nash equilibria are defined as usual. The set of (pure-strategy)

Nash equilibria in G is denoted by NE(G). In order to define a coalition-proof Nash
equilibrium, restricted games are introduced. For any coalition S ⊆ N and any
strategy profile of the complement of S, x̄−S , denote the game restricted by x̄−S by
G|x̄−S in which S is the set of players, XS is the set of pure strategy profiles, and
ui(·, x̄−S) : XS → R is the payoff function of player i ∈ S. Now, the definition of a
coalition-proof Nash equilibrium is provided as follows:

Definition 2 A coalition-proof Nash equilibrium x∗ ∈ X is defined inductively with
respect to the number of members in coalitions:

(i) For every i ∈ N , x∗
i is a coalition-proof Nash equilibrium of G|x∗

−i if x∗
i maxi-

mizes ui(·, x∗
−i).

1 The original definition of an aggregative game is such that the payoff of a player depends on

his/her strategy and the sum of the strategies of all players; on the other hand, we define an

aggregative game by the game in which a payoff to a player depends on his/her strategy and

the sum of the strategies of the other players. A class of aggregative games in the original

definition is included in a class of our aggregative games. In this paper, we call a game in

Definition 1 an aggregative game.
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(ii) Let S be a coalition with #S ≥ 2. Assume that the coalition-proof Nash equilib-
ria have been defined for every proper subset of S. Then, x∗

S is a coalition-proof
Nash equilibrium of G|x∗

−S if (a) and (b) are satisfied:
(a) x∗

S is a self-enforcing strategy profile of G|x∗
−S , which is defined as follows:

for every T ( S, x∗
T is a coalition-proof Nash equilibrium of G|x∗

−T .
(b) No other self-enforcing strategy profile yS of G|x∗

−S Pareto-dominates x∗
S :

ui(yS , x∗
−S) > ui(x∗

S , x∗
−S) for every i ∈ S.

The set of coalition-proof Nash equilibria in G is denoted by CPNE(G). For every
S ⊆ N and every x−S ∈ X−S , the set of coalition-proof Nash equilibria in a restricted
game G|x−S is also denoted by CPNE(G|x−S). Similarly, the set of Nash equilibria
in a restricted game G|x−S is denoted by NE(G|x−S).

In a coalition-proof Nash equilibrium of G, no proper coalition of N can not deviate
in such a way that the coalition uses coalition-proof Nash equilibria of its correspond-
ing restricted game and all members of the coalition are better off. Clearly, every
coalition-proof Nash equilibrium is a Nash equilibrium.

3 Properties of Coalition-proof Nash Equilibrium

Coalition-proof Nash equilibria of aggregative games with Conditions 1 and 2 are
examined in this section.

Condition 1 (Monotone externality) A game G satisfies monotone externality if
either positive externality or negative externality is satisfied:

Positive externality. For all i ∈ N , all xi ∈ Xi, and all x−i and x̂−i ∈ X−i, if∑
j 6=i xj >

∑
j 6=i x̂j , then ui(xi, x−i) ≥ ui(xi, x̂−i) holds.

Negative externality. For all i ∈ N , all xi ∈ Xi, and all x−i and x̂−i ∈ X−i, if∑
j 6=i xj >

∑
j 6=i x̂j , then ui(xi, x−i) ≤ ui(xi, x̂−i) holds.

Condition 2 (Strategic substitution) For all i ∈ N , for all xi, x
′
i with xi > x′

i,
and for all x−i, x

′
−i with

∑
j 6=i xj >

∑
j 6=i x′

j , if ui(x′
i, x

′
−i) − ui(xi, x

′
−i) ≥ 0, then

ui(x′
i, x−i) − ui(xi, x−i) > 0.

The condition of monotone externality requires that the payoff to player i changes
monotonically with respect to the strategies of players other than i. The Cournot
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competition game is one of the examples that satisfy negative externality; the vol-
untary provision game of a (pure) public good is an example that satisfies positive
externality.

The strategic substitution is as follows: Consider the situation in which player i

does not have an incentive to choose xi instead of x′
i when the other players choose

x′
−i. Then, player i also has such an incentive if the other players increase their

strategies from x′
−i.

2 Condition 2 is also satisfied by many games such as the Cournot
competition game and the voluntary provision game of a pure public good.3

The property presented in Lemma 1 holds in an aggregative game with monotone
externality and strategic substitution. This property is fundamental to clarify the
characteristics of a coalition-proof Nash equilibrium in this paper.

Lemma 1 Suppose that an aggregative game G satisfies Conditions 1 and 2. For all
x∗ ∈ NE(G), all non-empty S ⊆ N , and all x̃S ∈ XS , if ui(x̃S , x∗

−S) > ui(x∗) for
every i ∈ S, then x̃S is not a Nash equilibrium of G|x∗

−S .

Proof. Let x∗ ∈ NE(G). Let S ⊆ N be a coalition. Consider a coalitional deviation
from x∗ by S in which S deviates from x∗

S to x̃S and ui(x̃S , x∗
−S) > ui(x∗

S , x∗
−S) for

each i ∈ S. We provide the proof in the case in which the positive externality condition
is satisfied. The statement can then be shown in the case of the negative externality
similarly.

It follows that
∑

j 6=S\{i} x̃j >
∑

j 6=S\{i} x∗
j for every i ∈ S. If

∑
j 6=S\{i} x̃j ≤∑

j 6=S\{i} x∗
j for some i ∈ S, the following conditions are satisfied: ui(x∗

i , x
∗
−i) ≥

ui(x̃i, x
∗
−i) ≥ ui(x̃i, x̃S\{i}, x

∗
−S). The first inequality of this condition follows from the

definition of Nash equilibria and the second one follows from the positive monotonicity
condition. The condition ui(x∗

i , x
∗
−i) ≥ ui(x̃S , x∗

−S) contradicts that the deviation by
S is improving.

Summing up
∑

j 6=S\{i} x̃j >
∑

j 6=S\{i} x∗
j for every i ∈ S yields

∑
j∈S x̃j >∑

j∈S x∗
j . Hence, there exists k ∈ S such that x̃k > x∗

k. Since x̃k > x∗
k,∑

j 6=S\{k} x̃j >
∑

j 6=S\{k} x∗
j , and uk(x∗

k, x∗
−k) − uk(x̃k, x∗

−k) ≥ 0 for player k, we

2 Strictly speaking, Condition 2 is weaker than the standard strategic substitution condition.

The strategic substitution condition in Yi (1999) is defined as follows: For all i ∈ N , all

xi, x
′
i, and all x−i, x

′
−i, if xi > x′

i and
P

j 6=i xj >
P

j 6=i x′
j , then ui(x

′
i, x−i) − ui(xi, x−i) >

ui(x
′
i, x

′
−i) − ui(xi, x

′
−i). Note that Yi (1999)’s strategic substitution implies Condition 2,

but the converse is not true. Yi (1999)’s condition requires that ui(x
′
i, x−i) − ui(xi, x−i) is

decreasing in x−i for xi > x′
i, while Condition 2 does not. This difference does not matter

when proving our results.
3 The other examples that satisfy these two conditions are provided by Yi (1999).
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have uk(x∗
k, x̃S\{k}, x

∗
−S) − uk(x̃k, x̃S\{k}, x

∗
−S) > 0. This condition means that x̃S is

not a Nash equilibrium in G|x∗
−S . ¥

Lemma 1 says that no coalition can deviate from a Nash equilibrium in such a
way that every member of the coalition is better off and the coalitional deviation is
self-enforcing in this aggregative game. From this property, Yi (1999) obtained the
following proposition.

Proposition 1 (Yi, 1999) In aggregative games with Conditions 1 and 2, a profile
of strategies is a coalition-proof Nash equilibrium if and only if it is a Nash equilibrium
that is not strictly Pareto-dominated by any other Nash equilibrium.4

Applying Lemma 1 to the case of S = N , we obtain that a profile of strategies
that Pareto-dominates a Nash equilibrium of G is not a Nash equilibrium. If there
exist x∗ ∈ NE(G) and y∗ ∈ NE(G) such that x∗ Pareto-dominates y∗, then x∗ is
not a Nash equilibrium from Lemma 1. Thus, no Nash equilibrium Pareto-dominates
any other Nash equilibrium in an aggregative game with Conditions 1 and 2. This,
together with Yi (1999)’s result, implies the following corollary.

Corollary 1 The set of Nash equilibria, the set of coalition-proof Nash equilibria, and
the Pareto-efficient frontier of the set of Nash equilibria coincide in an aggregative
game with Conditions 1 and 2.

Yi (1999) showed only the equivalence between the Pareto-superior Nash equilib-
rium and the coalition-proof Nash equilibrium. In addition to this, we confirm from
Lemma 1 that the Nash equilibrium itself is equivalent to the coalition-proof Nash
equilibrium. This has not been mentioned by any earlier study.

In the following subsections, we prove that a coalition-proof Nash equilibrium satis-
fies the three distinct properties that have not been reported by any existing literature.
The statements are made based on Lemma 1.

3.1 Weakly Dominated Strategy and Coalition-proof Nash Equilibrium

In this subsection, we assume that Xi is a finite set for every i ∈ N .5 The definition
of weakly dominated strategies for a player is provided as follows:

4 As mentioned in footnote 2, the strategic substitution in Yi (1999) is stronger than Condition

2. However, the statement can also be proven under Condition 2.
5 We briefly mention the case of infinite strategy sets, later.
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Definition 3 (Weakly dominated strategies) Let Yj ⊆ Xj for every j ∈ N . A
strategy for i ∈ N , yi ∈ Yi, is a weakly dominated strategy in

∏
j∈N Yj if there is zi ∈ Yi

such that ui(zi, y−i) ≥ ui(yi, y−i) for every y−i ∈
∏

j 6=i Yj and ui(zi, y−i) > ui(yi, y−i)
for some y−i ∈

∏
j 6=i Yj . A strategy yi is an undominated strategy for i in

∏
j∈N Yj if

yi is not weakly dominated by any other strategy in Yi.

We use the weak dominance relation based on pure strategies.6 Note that the
weak dominance relation is transitive and asymmetric. That is, for every i ∈ N and
for every xi, yi, zi ∈ Yi ⊆ Xi, if xi weakly dominates yi on

∏
j∈N Yj and yi weakly

dominates zi on
∏

j∈N Yj , then xi weakly dominates zi on
∏

j∈N Yj (transitivity) and,
for every distinct xi, yi ∈ Yi ⊆ Xi, if xi weakly dominates yi on

∏
j∈N Yj , then yi

does not weakly dominate xi (asymmetry).

Definition 4 (Iterated elimination of weakly dominated strategies) Let
X0 ≡

∏
j∈N Xj . For every i ∈ N and every m ∈ Z++, let Xm

i denote the set of
strategies for i such that every xi ∈ Xm−1

i \Xm
i is a weakly dominated strategy

in Xm−1 ≡
∏

j∈N Xm−1
j . Suppose that at least one weakly dominated strategy is

eliminated if weakly dominated strategies exist at each round of elimination. Let
X∞ be the set of strategy profiles such that no further strategy can be eliminated
for every player.

For every game G = [N, (Xi)i∈N , (ui)i∈N ], let Gm = [N, (Xm
i )i∈N , (um

i )i∈N ] (m ∈
Z+∪{∞}) denote a game in which the set of strategy profiles is Xm and um

i (x) = ui(x)
for every i ∈ N and every x ∈ Xm. Hence, G0 is the original game G and G∞ is the
game in which further elimination of weakly dominated strategies cannot be done.

Remark 1 A coalition-proof Nash equilibrium may consist of weakly dominated
strategies; thus, a coalition-proof Nash equilibrium may be eliminated through the
process of the iterative elimination of weak dominated strategies. The following ex-
ample was presented by Peleg (1997), in which (A1, B1) is the unique coalition-proof
Nash equilibrium and A1 and B1 are dominated strategies if ci > bi and ai > ci for
every i ∈ {1, 2}. This equilibrium cannot survive the iterative elimination of weakly
dominated strategies.

Transitivity and asymmetry, together with finiteness of strategy spaces, imply that
every Nash equilibrium of Gm+1 is also a Nash equilibrium of Gm for every m ∈ Z+,
which is proven in Lemma 2.

6 Börgers (1993) provided an interesting justification for pure-strategy weak dominance.
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Table. 1 Coalition-proof Nash equilibrium consists of weakly dominated strategies

HHHHHH1
2

B1 B2

A1 a1, a2 b1, a2

A2 a1, b2 c1, c2

Lemma 2 Suppose that the set of strategies is finite for every player. Then, (2.1) for
every i ∈ N and every xi ∈ Xm

i \Xm+1
i , there exists x′

i ∈ Xm+1
i such that x′

i weakly
dominates xi in Xm, and (2.2) NE(Gm+1) ⊆ NE(Gm) for every m ∈ Z+.

Proof. We first show (2.1). Suppose not. For some i ∈ N and some xi ∈ Xm
i \Xm+1

i ,
no x′

i ∈ Xm+1
i weakly dominates xi. Since xi ∈ Xm

i \Xm+1
i , there is x′′

i ∈ Xm
i such

that x′′
i weakly dominates xi. If x′′

i ∈ Xm+1
i , this is a contradiction since x′′

i weakly
dominates xi. Hence, x′′

i belongs to Xm
i \Xm+1

i . Strategy x′′
i is also dominated in

Xm; hence, there exists x′′′
i ∈ Xm

i such that x′′′
i weakly dominates x′′

i . Similarly,
x′′′

i is in Xm
i \Xm+1

i from the transitivity of weak dominance relation. This sort of
dominance process continues. Since Xm

i \Xm+1
i is finite and the weak dominance

relation is asymmetric, some strategy x̄i ∈ Xm
i \Xm+1

i exists such that x̄i is not
weakly dominated by any strategy in Xm

i \Xm+1
i . However, x̄i is a weakly dominated

strategy in Xm, which implies that x̄i must be weakly dominated by some x̂i ∈ Xm+1
i .

The transitivity of weak dominance relation imply that xi is weakly dominated by
x̂i ∈ Xm+1

i , which is a contradiction.
Statement (2.2) is immediate from the definition of Nash equilibrium and (2.1). ¥

Proposition 2 Suppose that the set of strategies is finite for every player. Suppose
that an aggregative game G satisfies Conditions 1 and 2. Then, CPNE(Gm+1) ⊆
CPNE(Gm) for every m ∈ Z+.

Proof. Suppose, to the contrary, that x∗ /∈ CPNE(Gm) for some x∗ ∈
CPNE(Gm+1) and some m ∈ Z+. Since x∗ /∈ CPNE(Gm), there exists
a coalition S ⊆ N with strategy profile x̃S ∈ CPNE(G|x∗

−S) such that
ui(x̃S , x∗

−S) > ui(x∗
S , x∗

−S) for every i ∈ S. Clearly, x̃S belongs to Xm
S \Xm+1

S

because x∗ ∈ CPNE(Gm+1) and x∗ ∈ NE(Gm) from Lemma 2. It is straightforward
from Lemma 1 that x̃S is not a Nash equilibrium of Gm|x∗

−S , which is a contradiction.
¥
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Conditions 1 and 2 play an important role in the proof of Proposition 2. If one
of these conditions fails, then the statement of the proposition does not hold as the
following examples indicate.

Example 1 Consider the game in Table 2, which corresponds to the case of a1 =
a2 = 2, b1 = b2 = 0, and c1 = c2 = 1 in Table 1. Let Ak and Bk (k = 1, 2) be such that
Ak, Bk ∈ R, A1 > A2, and B1 > B2. In this case, the positive externality condition
is satisfied, but strategic substitution is not. Clearly, A1 and B1 are dominated
strategies. In the game after these strategies are eliminated, (A2, B2) is the unique
coalition-proof Nash equilibrium, but this equilibrium is not coalition-proof in the
original game.

Table. 2 Example 1

HHHHHH1
2

B1 B2

A1 2, 2 0, 2
A2 2, 0 1, 1

Example 2 Consider a game in Table 3, in which A1 < A2 < A3 and B1 < B2 < B3.

Table. 3 Example 2

HHHHHH1
2

B1 B2 B3

A1 0, 40 40, 40 40, 40
A2 10, 41 45, 40 40, 35
A3 20, 38 50, 30 40, 20
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This game satisfies strategic substitution because

u1(A1, B3) − u1(A3, B3) = 0 > u1(A1, B2) − u1(A3, B2) = −10

> u1(A1, B1) − u1(A3, B1) = −20,

u1(A1, B3) − u1(A2, B3) = 0 > u1(A1, B2) − u1(A2, B2) = −5

> u1(A1, B1) − u1(A3, B1) = −10, and

u1(A2, B3) − u1(A3, B3) = 0 > u1(A2, B2) − u1(A3, B2) = −5

> u1(A2, B1) − u1(A3, B1) = −10.

Similarly, we have

u2(A3, B1) − u2(A3, B2) = 8 > u2(A2, B1) − u2(A2, B2) = 1

> u2(A1, B3) − u2(A1, B3) = 0,

u2(A3, B1) − u2(A3, B3) = 18 > u2(A2, B1) − u2(A2, B3) = 6

> u2(A1, B1) − u2(A2, B3) = 0, and

u2(A3, B2) − u2(A3, B3) = 10 > u2(A2, B2) − u2(A2, B3) = 5

> u2(A1, B2) − u2(A1, B3) = 0.

For player 1, it is satisfied that u1(A2, B1) < u1(A2, B2) and u1(A3, B1) < u1(A2, B2);
a similar condition holds for player 2. Hence, this game does not satisfy the monotone
externality. In this game, (A1, B3) is the only coalition-proof Nash equilibrium but
both A1 and B3 are weakly dominated strategies for players 1 and 2, respectively.
Strategies A2 and B2 are also weakly dominated strategies. After the elimination of
A2, A3, B2, and B3, the only surviving strategy profile is (A3, B1). This is trivially a
coalition-proof Nash equilibrium in a game after these strategies are eliminated, but
this is not coalition-proof in the original game.

It follows from Proposition 2 that every coalition-proof Nash equilibrium of G∞

is a coalition-proof Nash equilibrium of G. Thus, there is a coalition-proof Nash
equilibrium of G that is not eliminated by iterative weak dominance. Of course, such
a coalition-proof Nash equilibrium consists of undominated strategies. From Corollary
1 and Proposition 2, we have the following corollary.

Corollary 2 Suppose that an aggregative game G satisfies Conditions 1 and 2 and
the strategy sets for all players are finite. Then, every Nash equilibrium of G∞ is a
coalition-proof Nash equilibrium of G.
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Proof. First, note that Conditions 1 and 2 hold in Gm for every m ∈ Z++ ∪ {∞}
if these conditions are satisfied in G. Applying Corollary 1 to G∞ yields NE(G∞) =
CPNE(G∞). From Proposition 2, CPNE(G∞) ⊆ CPNE(G). ¥

Corollary 2 shows that the relationship between coalition-proofness and the iterative
elimination of weakly dominated strategies is completely different from the one be-
tween coalition-proofness and the iterative elimination of strictly dominated strategies.
Moreno and Wooders (1996) examined the relationship between the coalition-proof
Nash equilibrium and the iterative elimination of strictly dominated strategies. They
treated a game with finite strategy sets and showed that if there exists a profile of
serially undominated strategies that Pareto-dominates all other serially undominated
strategies, then this is a coalition-proof Nash equilibrium in the game. Milgrom and
Roberts (1996) extended their result to a game with infinite strategy spaces under
the condition of strategic complementarity. These two papers also showed that a pro-
file of serially undominated strategies is the unique coalition-proof Nash equilibrium
in a dominance solvable game, in which the serially undominated strategy profile is
uniquely determined.

However, when we consider the elimination of weakly dominated strategies, serially
undominated strategy profiles are not necessarily coalition-proof. The difference be-
tween iterative weak domination and iterative strict domination is very noticable in
dominance solvable games. While the unique profile of serially undominated strategies
is a coalition-proof Nash equilibrium when iterative strict dominance is analyzed, this
is not necessarily observed when iterative weak dominance is considered. In Example
1, (A2, B2) is the unique strategy profile that consists of serially undominated strate-
gies in the sense of weak domination, but this is not coalition-proof in the game. This
applies to Example 2. In general, Pareto-superior serially undominated Nash equilib-
rium is not coalition-proof if an aggregative game fails to satisfy one of the conditions
of monotone externality and strategic substitution. Corollary 2 presented a sufficient
condition for an aggregative game under which some serially undominated strategy
profile in the sense of weak domination is coalition-proof in the game, analogous to
the iterative elimination of strictly dominated strategies.

Finally, we remark several points. The first is related to the assumption of finite
strategy spaces. The condition for finite strategy spaces is used only in the proof
of Lemma 2. The assumption of finite strategy sets guarantees that every weakly
dominated strategy is weakly dominated by an undominated strategy. From this
property, it follows that every Nash equilibrium of Gm+1 is also a Nash equilibrium
of Gm for every m. However, when the strategy sets are infinite, a strategy may
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be weakly dominated by another strategy that is weakly dominated by the other
weakly dominated strategy and so on. Therefore, in the case of infinite strategy
sets, some Nash equilibrium of Gm+1 may not be a Nash equilibrium of Gm for
some m due to such an infinite sequence of dominance relations, which means that
our main results may not hold in the case of infinite strategy spaces.7 However,
results that are similar to our main results can be obtained even in the case of infinite
strategy spaces if we adopt a variant of iterative weak dominance in which a strategy is
eliminated only if it is weakly dominated by an undominated strategy. Under this
iterative dominance concept, every eliminated strategy has an undominated strategy
that weakly dominates the eliminated strategy; hence, it follows that every Nash
equilibrium of Gm+1 is also a Nash equilibrium of Gm for every m in games with
infinite strategy sets.

Second, from Proposition 2, it follows that a coalition-proof Nash equilibria of G∞

are coalition-proof Nash equilibria of the original game G. However, not all of the
coalition-proof Nash equilibrium in G survive the iterative elimination of weakly domi-
nated strategies. The following example shows that a coalition-proof Nash equilibrium
of Gm may not be coalition-proof in Gm+1 for some m ∈ Z+. Some coalition-proof
Nash equilibrium in Gm may be eliminated through iterative weak dominance.

Example 3 Consider a game in Table 4. Let s∗i and s̃i be in R such that s∗i >

s̃i for every i ∈ N . This game satisfies the negative externality condition since
u1(s1, s

∗
2) < u1(s1, s̃2) for every s1 = s∗1, s̃1 and u2(s∗1, s2) < u2(s̃1, s2) for every

s2 = s∗2, s̃2. The strategic substitutability also holds because u1(s̃1, s
∗
2)− u1(s∗1, s

∗
2) >

u1(s̃1, s̃2) − u1(s∗1, s̃2) = 0 and u2(s̃1, s̃2) < u2(s̃1, s
∗
2). In this game, (s̃1, s

∗
2) and

(s∗1, s̃2) are coalition-proof Nash equilibria. However, s∗1 and s̃2 are both weakly dom-
inated strategies. Hence, the coalition-proof Nash equilibrium (s∗1, s̃2) is eliminated,
while (s̃1, s

∗
2) survives the elimination of weakly dominated strategies.

Table. 4 Example 3

HHHHHH1
2

s∗2 s̃2

s∗1 −3, 0 0, 0
s̃1 −2, 2 0, 1

7 There are economic games in which the infinite sequence of dominance relations does not occur.

The standard Cournot game and the public-good-provision game are such examples.
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Third, one may think that it is meaningless to examine the relationship between
coalition-proofness and the elimination of weakly dominated strategies because the
iterative elimination of weakly dominated strategies is an order-dependent procedure.
However, our results can be applied to an order-independent procedure that was
proposed by Marx and Swinkels (1997) and Marx (1999), called the elimination of
nicely weakly dominated strategies. This scheme is defined as follows: For every player
i, a strategy xi nicely weak dominates a strategy x′

i on X if (i) xi weakly dominates
x′

i on X and (ii) for all x−i ∈ X−i if ui(xi, x−i) = ui(x′
i, x−i), then uj(xi, x−i) =

uj(x′
i, x−i) for every j ∈ N . The concept of nice weak dominance is also defined

for Y ⊆ X. Eliminating the nicely weakly dominated strategies, we can construct a
sequence of games {Gm}∞m=0 as in the standard iterative weak domination. For all
i ∈ N and all i’s strategies xi and x̃i, xi is weakly dominated by x̃i if xi is nicely
weakly dominated by x̃i. This property, together with the finiteness of strategy sets,
implies that NE(Gm+1) ⊆ NE(Gm) for all m ∈ Z+. By using Lemma 1, we can
show that CPNE(Gm+1) ⊆ CPNE(Gm) under Conditions 1 and 2 for all m.

3.2 Coalition-proof Nash Equilibrium under Restricted Coalition Formation.

What happens if the process of coalition formation is restricted for some reason?
For example, the coordination of many agents is very costly and it is difficult for a
large coalition to be formed, some individuals are unable to form a coalition because
of geographical compulsions, firms are prohibited to form a cartel by law, etc. We
examine this questions in an aggregative game with Conditions 1 and 2 by introducing
a coalition-proof Nash equilibrium with a restriction on coalition formation.

A restriction on coalition formation is defined as a subset of 2N\{∅}. Let T denote
a restriction of coalition formation. Suppose that only the coalitions in T can be
formed. We call an element in T a feasible coalition. Since singleton coalitions can
always switch strategy without cooperation with the other players, we assume that
every singleton coalition belongs to T . One of the examples of the restrictions on
coalition formation is T k ≡ {S ⊆ N |#S ≤ k} for some k ≤ n: In this restriction, at
most k players can coordinate their strategies.8

8 The first paper to introduce this type of restriction on coalition formation to non-cooperative

equilibrium concepts is Deb et al. (1997). They applied this restriction to Aumann (1959)’s

strong Nash equilibrium and introduced a strong Nash equilibrium with T k. Serizawa (2006)

also used a similar restriction in the mechanism design literature.

15



Definition 5 A strategy profile x∗ is a coalition-proof Nash equilibrium with a re-
striction on coalition formation T in G is defined with recursion in the number of
players in coalitions.

(i) For every i, x∗
i is a coalition-proof Nash equilibrium with T of G|x∗

−i if x∗
i ∈

arg maxxi∈Xi ui(xi, x
∗
−i).

(ii) Let S ∈ T be a feasible coalition with #S ≥ 2. Assume that a coalition-proof
Nash equilibrium with T of G|x∗

−T has been defined for every T ( S such that
T ∈ T . Then, x∗

S is a coalition-proof Nash equilibrium with T of G|x∗
−S if the

following two conditions are satisfied: (i) for every T ( S with T ∈ T , x∗
T is

a coalition-proof Nash equilibrium with T of G|x∗
−T (self-enforceability with T

in G|x∗
−S) and (ii) there is no yS ∈ XS such that yS is self-enforcing with T in

G|x∗
−S and ui(yS , x∗

−S) > ui(x∗
S , x∗

−S) for every i ∈ S.

The coalition-proof Nash equilibrium with T is equivalent to the Nash equilibrium
if T = {{i}| i ∈ N} and this is equivalent to the coalition-proof Nash equilibrium in
Definition 2 if T = 2N\{∅}. For every T , every coalition-proof Nash equilibrium with
T is a Nash equilibrium. For all T , T̂ ⊆ 2N\{∅}, if T ⊆ T̂ , then every coalition-proof
Nash equilibrium with T̂ is a coalition-proof Nash equilibrium with T . If T 6= T̂ ,
coalition-proof Nash equilibria with T and T̂ generally assign different strategies.
However, in an aggregative game with Conditions 1 and 2, the sets of coalition-proof
Nash equilibria with different restrictions of coalition formation coincide.

Proposition 3 For all T , T̂ ⊆ 2N\{∅}, a strategy profile is a coalition-proof Nash
equilibrium with T if and only if it is a coalition-proof Nash equilibrium with T̂ in
an aggregative game with Conditions 1 and 2.

Proof. Let x∗ ∈ X be a coalition-proof Nash equilibrium with T . Suppose that x∗ is
not a coalition-proof Nash equilibrium with T̂ . Then, there exists a coalition S ∈ T̂ \T
with strategy profile x̃S ∈ XS such that x̃S is a coalition-proof Nash equilibrium with
T in G|x∗

−S and ui(x̃S , x∗
−S) > ui(x∗) for every i ∈ S. Notice that x̃S ∈ NE(G|x∗

−S).
However, it is straightforward from Lemma 1 that x̃S /∈ NE(G|x∗

−S). This is a
contradiction. The converse can be proven similarly. ¥

An implication of Proposition 3 is that a restriction on coalition formation does not
affect the equilibrium outcomes in an aggregative game with Conditions 1 and 2. For
example, consider the Cournot oligopoly game, which is an aggregative game that
satisfies Conditions 1 and 2. Consider a situation in which firms form a cartel and
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coordinate their quantities but only small cartels can be formed because the coordi-
nation of many firms is difficult and costly. Our results imply that the equilibrium
outcomes against self-enforcing cartel behavior in this situation is the same as those
in the situation in which all possible coalitions are feasible. Thus, in the aggregative
game, the self-enforcing behavior of cartels leads to the same outcomes, irrespective
of how many players can coordinate their strategies jointly.

Serizawa (2006) studied a coalition-proof Nash equilibrium under a restriction on
coalition formation in which at most two players can form a coalition in the mechanism
design literature. He introduced the axiom of effective pairwise strategy-proofness and
examined which social choice rules satisfy this axiom. The effective strategy-proofness
requires that a truth-telling dominant-strategy equilibrium should be a coalition-proof
Nash equilibrium with T 2 = {S ⊆ N |1 ≤ #S ≤ 2} in the preference revelation game.
Thus, a social choice rule with this axiom is immune to unilateral manipulation and
self-enforcing pairwise manipulation of preferences. The effective pairwise strategy-
proofness seems to be much weaker than the axiom of group strategy-proofness, which
requires that no groups of players should manipulate their preferences. However, Ser-
izawa (2006) showed the equivalence between the effective pairwise strategy-proofness
and the group strategy-proofness in some environments such as an economy with
public goods. This implies that the truth-telling strategy profile is a coalition-proof
Nash equilibrium with T 2 if and only if it is a coalition-proof Nash equilibrium with
T n = {S ⊆ N |1 ≤ #S ≤ n} in the revelation game. Of course, the revelation game is
not an aggregative game and also does not satisfy Conditions 1 and 2. Our analysis
shows that the phenomenon similar to the one in Serizawa (2006) is observed in many
non-cooperative games that have been frequently studied in economics.

3.3 Coalition-proofness and Farsighted Stability

Ju and Sarin (2009) addressed the following question: What is a “reasonable”
self-enforcing coalition deviation? They introduced a new concept of non-cooperative
equilibrium that is based on the coalition-proof Nash equilibrium. The coalition-proof
Nash equilibrium is immune to self-enforcing deviations defined in Definition 2. The
self-enforcing deviations are such that proper subcoalitions of a coalition S do not
deviate in a self-enforcing way after a deviation of S. Thus, the coalition-proof Nash
equilibrium assumes that only the internal members of S object to the deviation of
S and outside players of S do not respond to this deviation. This assumption is valid
when a deviation of a coalition S is known only to the members of S. However, this
may not be natural in a situation in which a deviation of S is open to players outside
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S and outsiders can respond to this deviation. A weak coalition equilibrium, which
was introduced by Ju and Sarin (2009), is one of equilibrium concepts that consider
such a situation.

The weak coalition equilibrium is immune to all strictly self-enforcing deviations.
The strictly self-enforcing deviations are defined as coalitional deviations which satisfy
not only (internal) self-enforceability in the sense of Definition 2 but also across-
coalitional self-enforceability. The notion of across-coalitional self-enforceability is
based on the farsightedness of players and the following situation is considered: A
deviation of coalition S from a strategy profile may induce a deviation of the other
coalition, which also leads to further coalitional deviations and so on. A coalition
deviates if this deviation benefits all members of the coalition at the consequence of
successive deviations. This notion of deviations admits non-internal deviations. For
example, after a deviation by coalition S, a subcoalition of S and players outside S

may deviate jointly or players outside S form a coalition and make a deviation.
The formal definition of weak coalition equilibria are presented as follows: A se-

quence of deviations from x ∈ X to y ∈ X, which is denoted by {(xr, Sr)}m∈Z++
r=0 , is de-

fined as follows: x0 ≡ x, S0 ≡ ∅, xm ≡ y, and xr ∈ X, Sr ⊆ N , and xr ≡ (xr
Sr , x

r−1
−Sr )

for every r ≥ 1; this represents that Sr deviates from xr−1 by using xr
Sr . A sequence

of internally self-enforcing deviations from x to y is a sequence of deviations such
that ui(y) > ui(xr) for any i ∈ Sr and xr

Sr ∈ CPNE(G|xr−1
−Sr ) for every r ≥ 1.

The formal definitions of strictly self-enforcing deviations and weak coalition equi-
libria are as follows:

Definition 6 A strategy profile x̃S ∈ XS is a strictly self-enforcing deviation of S

from x if it satisfies

(C1) ui(x̃S , x−S) > ui(x) for every i ∈ S,
(C2) x̃S ∈ CPNE(G|x−S), and
(C3) x̃S is an across-coalitionally self-enforcing deviation of S from x: there is a

sequence of internally self-enforcing deviations {(xr, Sr)}m
r=0 such that S1 = S,

x1 = (x̃S , x−S), xm ∈ CPNE(G), and ui(xm) > ui(x) for any i ∈ S.

Definition 7 A weak coalition equilibrium is a Nash equilibrium that is immune to
all strictly self-enforcing deviations.

Across-coalitional self-enforceability indicates that players coordinate their strate-
gies in the absence of binding agreements; hence, an agreement xr

Sr of a coalition Sr

(r ≥ 1) must be internally self-enforcing if players Sr reach an agreement, and the fi-
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nal outcome xm must be a coalition-proof Nash equilibrium since no further deviation
can occur from the final outcome. The difference between the coalition-proof Nash
equilibrium and the weak coalition equilibrium lies in condition (C3). This condition
restricts the self-enforcing deviations in the sense of Definition 2. The weak coalition
equilibrium assumes that a coalition deviates if and only if the coalition has an in-
ternally self-enforcing deviation that results in improvement at the terminal point of
successive deviations.

Example 4 Consider the following example depicted in Table 5, in which player 1
chooses rows, player 2 chooses columns, and player 3 chooses matrices. The first entry
in each box is player 1’s payoff, the second is player 2’s, and the third is player 3’s.
In this game, (A1, B1, C1) is a weak coalition equilibrium that is not coalition-proof
and (A3, B2, C2) is a coalition-proof Nash equilibrium. The equilibrium (A1, B1, C1)
is not coalition-proof since a deviation by players 1 and 2 from (A1, B1) to (A3, B2)
is self-enforcing in the sense of Definition 2. However, this deviation is not strictly
self-enforcing because player 3 wants to switch from C1 to C3 after the deviation by
players 1 and 2, which finally leads to a coalition-proof Nash equilibrium (A3, B2, C2).
At the final outcome (A3, B2, C2), players 1 and 2 are worse off.

Table. 5 Payoff matrix of Example 4

HHHHHH1
2

B1 B2

A1 2, 2, 2 0, 0, 1
A2 2, 0, 1 2, 0, 1
A3 0, 0, 1 3, 3, 0

3 C1

HHHHHH1
2

B1 B2

A1 0, 0, 0 1, 1, 0
A2 0, 0, 2 0, 2, 0
A3 0, 0, 0 1, 1, 3

3 C2

Trivially, any weak coalition equilibrium is a Nash equilibrium. Any coalition-proof
Nash equilibrium is a weak coalition equilibrium because the coalition-proof Nash
equilibrium is stable against all self-enforcing deviations, deviations with (C1) and
(C2), while the weak coalition equilibrium is immune to the deviations with all the
three conditions. Thus, the weak coalition equilibrium is more likely to exist than the
coalition-proof Nash equilibrium. In fact, the weak coalition equilibrium exists if a
Nash equilibrium exists, as Ju and Sarin (2009) proved, while a coalition-proof Nash
equilibrium does not necessarily exist even if a Nash equilibrium exists. Hence, there
is a weak coalition equilibrium in many games studied in economics.
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Although they showed the existence of weak coalition equilibria, it is open as to
which Nash equilibrium is a weak coalition equilibrium. Here, we provide a charac-
terization of the equilibria in an aggregative game under Conditions 1 and 2 by using
Lemma 1.

Proposition 4 A strategy profile is a weak coalition equilibrium if and only if it is
a coalition-proof Nash equilibrium in an aggregative game with Conditions 1 and 2.

Proof. Obviously, every coalition-proof Nash equilibrium is a weak coalition equilib-
rium. We show the converse. Let x ∈ X denote a weak coalition equilibrium. Hence,
x is a Nash equilibrium in G. From Lemma 1 it follows that there is no coalitional
deviation that satisfies (C1) and (C2). This means that x is a coalition-proof Nash
equilibrium. ¥

In aggregative games with Conditions 1 and 2, no coalitions can deviate from a
Nash equilibrium in a way that satisfies coalitional profitability (C1) and (internal)
self-enforceability (C2). Therefore, there is no coalition deviation that satisfies from
(C1) to (C3) trivially. This is the intuition behind Proposition 4.

The following is a remark for Proposition 4: In the across-coalitional self-
enforceability, a sequence {(xr, Sr)}m

r=0 is assumed to satisfy xr ∈ CPNE(G|xr−1
−Sr )

for every r and xm ∈ CPNE(G). Proposition 4 still holds if we replace this assump-
tion with the assumption that xr ∈ NE(G|xr−1

−Sr ) for every r and xm ∈ NE(G),
which is another conceivable assumption for the agreements of coalitions and the final
outcomes without binding agreements. There is the possibility that the set of weak
coalition equilibria shrinks when a coalition-proof Nash equilibrium is replaced with a
Nash equilibrium. However, the equilibrium set does not change by this replacement
since (C1) is incompatible with (C2) in an aggregative game with Conditions 1 and
2.

Ju and Sarin (2009) presented examples in which a weak coalition equilibrium exists
but a coalition-proof Nash equilibrium does not. Hence, the weak coalition equilibirum
assigns a strategy profile different from the coalition-proof Nash equilibrium. However,
in the aggregative games with Conditions 1 and 2, these two equilibria are equivalent.
The class of aggregative games with Conditions 1 and 2 includes games that have
been studied in economics such as the standard Cournot game and the public good
provision game. We find that there is no difference between these two equilibria in
some games that have been frequently studied in economics.

20



4 Concluding Remarks

We have investigated a coalition-proof Nash equilibrium of an aggregative game
with monotone externality and strategic substitution. The concept of coalition-proof
Nash equilibrium is defined with recursion in the number of players in a coalition. Due
to the recursive nature of this equilibrium, it is difficult to examine which properties
are satisfied by the coalition-proof Nash equilibrium even in a restricted class of games
such as aggregative games. First, we showed that no improving coalitional deviations
from every Nash equilibrium are self-enforcing in aggregative games with monotone
externality and strategic substitution. Using this property, we proved that (i) some
coalition-proof Nash equilibrium survives the iterative elimination of weak dominated
strategies, (ii) the sets of coalition-proof Nash Equilibria are the same under any
restriction on coalition formation, and (iii) the coalition-proof Nash equilibrium is
equivalent to the weak coalition equilibrium. Statement (i) implies that there exist
serially undominated strategies in the sense of weak domination that is a coalition-
proof Nash equilibrium. Statement (ii) means that coalition-proof outcomes in this
type of games do not depend on which coalitions are feasible. Statement (iii) indicates
that the outcomes in equilibria do not change even if players behave according to some
farsighted behavioral principle. Since many examples of aggregative games with the
two conditions exist in economics, our result might be useful to specify the properties
of a coalition-proof Nash equilibrium in economic analyses.

Finally, we make comments on the topics for future research. In general, how to
restrict feasible coalitions affects the coalition-proof Nash equilibria with restrictions
on coalition formation. However, in games other than our games, it is open as to how
the equilibrium set changes as the restriction on coalition formation changes. This
is left for the future. Several authors such as Mariotti (1997) and Xue (2000) have
introduced concepts of farsighted stability different from the weak coalition equilib-
rium. However, it is unknown as to which strategy profiles satisfy these farsighted
stability concepts in an aggregative game with monotone externality and strategic
substitution. It would be interesting to investigate this.
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