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Abstract

The strategic analysis of voluntary participation in the public good provision has shown two
distinct results. First, when the provision of public goods is binary, there are Nash equilibria
supporting efficient allocations, and these are Strong Nash equilibria of the game. On the other
hand, in the model of a continuous public good, Saijo and Yamato (1999, Journal of Economic
Theory) showed that the participation of all agents is not an equilibrium in many situations. This
paper considers the provision of a public good that is discrete and multi-unit, and considers a unit-
by-unit participation game. Namely, people are asked to participate in each unit of public good
provision, and those who chose to participate share the marginal cost of public good. In this game
of public good provision, unlike the case of Saijo-Yamato, there are subgame-perfect equilibria that
are Pareto efficient. We also use the refinement concepts to eliminate inefficient subgame-perfect
equilibria and also to characterize the efficient subgame-perfect equilibria.

∗Corresponding author. Tel: +1 (613) 533-2262, Fax: +1 (613) 533-6668.
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1 Introduction

The strategic analysis of the public good provision (known as the free-rider problem) has two

theoretical issues. The first, one that has gathered much interest, is the demand revelation problem.

Groves and Ledyard (1977), Walker (1981) and others showed that there is a mechanism that

achieves a Pareto efficient allocation through the Nash equilibrium. On the other hand, Palfrey

and Rothenthal (1984), Saijo and Yamato (1999), and Dixit and Olson (2000) pointed out another

issue of participation. Due to the nature of a public good, called non-excludability, each member

of a group is tempted to free-ride, hoping that the other members of the group will pay the cost of

the public good. Dixit and Olson (2000), for example, say that the conventional mechanism design

approaches “start by assuming that the power to make and implement the mechanism has been

handed over to someone, presumably by a duly constituted meeting of all participants. They do

not consider individual incentives to attend this meeting; thus, they skip what we called the vital

first stage of voluntary participation” (p. 313-314).

The significance of the participation problem is recognized in various economic situations. Many

international treaties, including the withdrawal of the United States and other countries from the

Kyoto Protocol, face this problem. Although it is in the interest of all to work towards common

concerns, such as solving global environmental problems and promoting world peace,1 we cannot

prevent non-ratifiers of treaties to free-ride on the non-excludable benefits created by ratifiers,
1For example, the Nuclear Non-Proliferation Treaty is known to have nonsignatories that possess (or have ambition

to possess) nuclear weapons. This results in the underprovision of a public good, i.e., world peace.
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because of the absence of coercive powers to punish non-ratifiers. Another example of the partici-

pation problem is public broadcasting. For example, a public service broadcaster in Japan (Nihon

Hoso Kyokai) is supported by the broadcasting fee. But many households choose not to pay the

fee, as there are no penalties in place.

The analysis of voluntary participation has shown two distinct results. First, when the provision

of public goods is binary (Palfrey and Rothenthal (1984), Dixit and Olson (2000), Cavaliere (2001),

Shinohara (2004, 2005)), there are Nash equilibria supporting efficient allocations, and these are

Strong Nash equilibria (Aumann (1959)) of the game. On the other hand, in the model of a contin-

uous public good, Saijo and Yamato (1999) examined the following two-stage game with voluntary

participation: In the first stage, each agent simultaneously decides whether she participates in the

mechanism or not, and in the second stage, knowing the other agents’ participation decisions, the

agents who chose to participate in the first stage select their messages in the mechanism. They

showed that the participation of all agents is not an equilibrium in many situations. Okada (1993)

and Ray and Vohra (1997) derived similar conclusions under different settings.

This paper considers whether there is a mechanism that takes account of agents’ voluntary

participation and that implements Pareto efficient allocations. We examine the provision of multi-

unit public good where the unit is discrete. The direct application of Saijo-Yamato’s two-stage

mechanism results in too little participation and inefficient allocations. We then construct the

following unit-by-unit participation game. Rather than a group of participants choosing the level

of public good provision as in Saijo-Yamato’s framework, we consider the case where agents make
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the decision to participate in each unit of public good provision. For each unit, the agents who

choose to participate share the marginal cost of public good. If the sum of the contributions by

participants can afford the marginal cost, then that unit of public good is provided and the game

moves to the next unit of the public good provision.

An intriguing real-world example of the unit-by-unit participation game is the negotiation pro-

cess at abatement level of chlorofluorocarbon emission at the Montreal Protocol and the subse-

quent amendments and adjustments. The Protocol in 1987 established regulations on substances

that would deplete the ozone layer. Subsequently, signatory countries held several conferences (at

London in 1990, at Copenhagen in 1992, at Vienna in 1995, and at Montreal in 1997), where amend-

ments were adopted to tighten existing control schedules and to add controls for further reduction

of emissions of ozone-depleting substances. Amendments required ratification by a defined number

of parties before their entry into force. The successful results of the Protocol have been recognized

by many as an example of solving global environmental problems.

In this game of public good provision, unlike the case of Saijo-Yamato, there are subgame-

perfect equilibria that are Pareto efficient. Moreover, these efficient subgame-perfect equilibria

satisfy a stronger concept of a strict perfect equilibrium (Muto (1986)). We then characterize the

set of strict perfect equilibria of this game. We also show that the concepts of a strong perfect

equilibrium (Rubinstein (1980)) and a Perfectly Coalition-Proof Nash equilibrium (Bernheim, Peleg

and Whinston (1987)) are useful to eliminate inefficient subgame-perfect equilibria and also to

characterize the efficient subgame-perfect equilibria.
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2 Model

Consider a model with one public good that can be produced from a single private good.

The public good is produced in discrete units: the unit of public good y can take only the value

of integers. Let C(y) be the total cost of producing y units of the public good, and let c(y) ≡

C(y) − C(y − 1) > 0, y = 1, 2, ..., denote the cost of producing the y’th unit of the public good

(hereafter referred to as ‘the marginal cost’). We assume C(0) = 0.

There are n agents. Each agent i (i ∈ {1, ..., n} ≡ N) has the preference relation that is

represented by a quasi-linear utility function Vi(xi, y) = Ui(y) − xi, where xi denotes agent i’s

contribution of the private good. We normalize to Ui(0) = 0 for all i. Let ui(y) ≡ Ui(y)−Ui(y−1) >

0, y = 1, 2, ..., denote the marginal utility. Let θP (y) ≡
∑

i∈P ui(y) be the sum of the marginal

utilities of the y’th unit of the agents in P ⊆ N , with θ∅(y) ≡ 0 for all y.

The following assumptions simplify the proof of the propositions.

Assumption 1 The public good can be provided at most ȳ <∞ units.

Namely, we consider a situation in which there is a capacity for the provision of the public good,

beyond which the additional provision is either infeasible or it entails prohibitively high marginal

costs.

The next assumption is standard:
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Assumption 2 There exists a unique value of y∗, 0 < y∗ ≤ ȳ such that:

θN (y) > c(y) for all y ∈ {1, 2, . . . , y∗}, and θN (y) < c(y) for all y ≥ y∗ + 1.

That is, y∗ is the Pareto efficient amount of public good.2 This includes a standard assumption

of diminishing marginal utility and non-decreasing marginal cost.

3 Participation Game

As in the setup by Palfrey and Rothenthal (1984), Saijo and Yamato (1999) and others, we

consider a situation where there is no coercive power to enforce the mechanism by compulsory

participation of the agents, and any mechanism must take account of participation as a choice

variable of the agents.3 In this section, we first review Saijo and Yamato’s (1999) framework and

results. We then introduce our unit-by-unit participation game.

A Two-Stage Participation Game

Saijo and Yamato (1999) formally treated the public good provision problem with voluntary par-

ticipation. They considered the following two-stage game:

Stage 1. Agents decide IN or OUT.

Stage 2. Let T ⊆ N be the set of agents who choose IN at Stage 1. Then a game (ST , gT ) with

the strategy space ST = ×i∈TS
T
i and the outcome function gT : ST → R#T+1 is played, where

2The model can include the case where there is a high start-up cost in which θN (1) < c(1) but there exists ŷ > 1
such that

∑
i∈N

Ui(ŷ) > C(ŷ), with the reformulation that, for y > 0, Ûi(y) ≡ Ui(ŷ−1+y) and Ĉ(y) ≡ C(ŷ−1+y).
3As in conventional studies of the public good provision, the structure of the participation game is common

knowledge, so that it is a complete information game.
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gT (s) = (gT
x (s), gT

y (s)) = ((xi)i∈T , y) such that C(y) =
∑

i∈T xi determines the payoff of the agents

such that Vi(xi, y) = Ui(y)− xi for i ∈ T and Vi(xi, y) = Ui(y) for i ∈ N \ T .

They showed that the participation of all agents is not an equilibrium in many situations. Their

result applies to the current environment, as we will illustrate by the following example.

Example 1 Consider the economy with n = 2 and the agents have identical preferences represented

by Vi(xi, y) = U(y)−xi, where u(y) ≡ U(y)−U(y−1) is non-increasing in y, and the cost function

is C(y) = y for all y.

Let yf be the allocation that satisfies:

yf = arg max
y

U(y)− y.

This is an allocation in which one agent free-rides. Consider the case where yf is uniquely deter-

mined, in which:

u(y) > c(y) if y ≤ yf and u(y) < c(y) if y > yf . (1)

Suppose also that θN (yf + 1) > c(yf + 1), so that yf < y∗ (yf is not Pareto efficient level of the

public good).

Consider first the game with Saijo-Yamato’s setting where gT is the voluntary contribution

mechanism, where xi = si ≥ 0, y =
∑

i∈T si. Suppose that T = N at Stage 1. Then x1, x2 and y

satisfy:
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y = x1 + x2, xi = arg max
xi≥0

U(xi + xj)− xi (i, j = 1, 2). (2)

An inspection of (1) shows that the solution of (2) is y = yf and {(x1, x2)|x1 + x2 = yf , 0 ≤ x1 ≤

yf , 0 ≤ x2 ≤ yf}. In this setting, if agent i (i = 1, 2) participates, agent j (j = 1, 2, j 6= i) never has

an incentive to participate, since by choosing OUT in Stage 1, agent j can enjoy Vj(xj , y) = U(yf ),

which is at least as good as any outcome when T = N . Given that agent j does not contribute

to the public good, agent i chooses to participate and produce yf . Therefore, utility vectors

(V1, V2) = (U(yf )−yf , U(yf )) and (V1, V2) = (U(yf ), U(yf )−yf ) (where only one agent participates,

or T = N and only one agent contributes at Stage 2) constitute the Nash equilibria. The game

essentially has the structure of the ‘Hawk-Dove’ game, such that only one agent contributes at any

subgame-perfect equilibrium, so that the voluntary contribution of all agents is not obtained at the

voluntary contribution mechanism.

Consider next the case where gT is a Pareto efficient mechanism, where gN
y (s∗) = y∗ and

g
{i}
y (s∗) = yf at any s∗ that constitutes an equilibrium of the game (ST , gT ). Examples are the

mechanisms by Groves-Ledyard (1977) and Walker (1981) which implement y∗ at Nash equilibria.

In this case, if y∗ and yf satisfy:

2U(yf ) > 2U(y∗)− y∗, (3)

it is impossible for T = N in Stage 1 to be an equilibrium.4 Nothing in the model precludes (3) to
4In order to induce the participation of agent i (i = 1, 2) in Stage 1, U(yf ) ≤ U(y∗) − xi has to hold. Since

x1 + x2 = y∗, this is incompatible with (3).
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hold, so that the participation of all agents and the efficient provision of the public good are not

obtained in an equilibrium.5

Our aim in this paper is to show that there is a mechanism that takes account of agents’

voluntary participation and that implements Pareto efficient allocations.

A Unit-by-unit Participation Game

We now formally introduce our unit-by-unit participation game. It is a multi-stage game, and

each stage of the game consists of two sub-stages that correspond to participation and cost-share

decisions, respectively. The first stage is the following:

Stage 1.1. Agents decide IN or OUT.

Stage 1.2. Let P ⊆ N be the set of agents who choose IN at Stage 1.1. When P = ∅, the game

ends. When P 6= ∅, we consider the following stage game among the participants. Each agent i ∈ P

announces γi ∈ IR++ which determines her contribution.6 The outcome of the stage game is: (i) If

∑
j∈P γj ≥ c(1), then the cost share of agent i ∈ P is g1

i ≡
γi∑

j∈P γj
c(1), and the game continues

to Stage 2. (ii) Otherwise, the game ends.

In Stage 1.1, each agent’s participation decision is taken for the first unit of the public good.

Stage 1.2 is the cost-share decision among the participants for the first unit of the public good.
5The results are the same with n > 2. Saijo and Yamato show through the class of symmetric Cobb-Douglas

utility profiles that the measure of the set of the economies for which all agents have participation incentives becomes
smaller and converges to zero as n grows large. The same property can hold in our economy, for example, in the

class of U(y) =
1

1− α
y1−α, α ∈ (0, 1). (3) holds when α > 1/2. The critical value of α which is compatible with full

participation is decreasing in n as in Saijo-Yamato’s (1999) Figure 2.
6Inclusion of zero contribution at the cost-share stage does not affect the nature of the following analysis.
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Following the literature of the public good participation game, non-participants do not contribute

to the marginal cost c(1) where they can enjoy the benefit if the public good is provided. The game

ends if nobody participates, or if the contribution falls short of c(1).

Stages y, y = 2, 3, ..., ȳ, are defined analogously. When the game continues to Stage y, then:

Stage y.1. Agents decide IN or OUT.

Stage y.2. Let P ⊆ N be the set of agents who choose IN at Stage y.1. When P = ∅, the game

ends. When P 6= ∅, we consider the following stage game among the participants. Each agent i ∈ P

announces γi ∈ IR++ which determines her contribution. The outcome of the stage game is: (i) If

∑
j∈P γj ≥ c(y), then the cost share of agent i ∈ P is gy

i ≡
γi∑

j∈P γj
c(y), and the game continues

to Stage y + 1. (ii) Otherwise, the game ends.

There are several remarks.

• An important difference from Saijo and Yamato’s (1999) game is the notion of participation.

Rather than a group of participants choosing the level of public good provision as in Saijo-

Yamato’s framework, we consider the case where agents make the decision to participate

in each unit of public good provision. This allows the non-participants of earlier stages to

contribute at subsequent stages. A situation where re-negotiation is possible applies to this

case.

• The structure of the game is set up in a way that allows a re-entry and an exit in later stages.

For a re-entry (or participation at later stages), the agents who choose to participate in the
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earlier stages may want to ask for a high contribution from those who participate later. This

is possible if the former continues to choose IN and get such an agreement in the cost-share

stage. The possibility against punishment for exiting substantially complicates the analysis,

and we do not consider this here.

Let us introduce some notations to facilitate the formal treatments in the following sections. A

(pure) strategy of agent i at Stage y, sy
i , specifies: (1) agent i’s action that specifies IN or OUT

at Stage y.1, and (2) a function γy
i : {P ⊆ N |i ∈ P} → IR++ that describes agent i’s action γi

at Stage y.2 when she participates at Stage y.1 and the set of participants is P . In general, such

actions may depend on a history (a sequence of actions in previous stages). However, in order to

simplify the analysis, we introduce the following condition of History-Independence to the strategy.

Let sy ≡ (sy
i )i∈N , and let Sy denote the set of sy. Let P y : Sy → 2N specify the set of participants

at Stage y.1.

History-Independence: P y(sy) and γy
i (P ) are independent of the history for all y, all i and all

P ⊆ N (i ∈ P ).7

7Formally, let A1
i be a choice set of agent i at Stage 1. An action a1

i ∈ A1
i specifies: (1) IN or OUT at Stage 1.1,

and (2) a function γ1
i : {P ⊆ N |i ∈ P} → IR++ that describes agent i’s action γi at Stage 1.2 when she participates

and the set of participants is P . The set of possible actions at Stage y (y ≥ 2) is defined iteratively. Given any
sequence of actions in previous stages, i.e., (aŷ

i )i∈N , ŷ ≤ y − 1, let hy ≡ ((a1
i )i∈N , ..., (a

y−1
i )i∈N ) ∈ Hy be the history

at the end of Stage y− 1, and we let Ay
i (hy) denote agent i’s feasible actions in Stage y. A (pure) strategy of agent i

at Stage y, sy
i , specifies: (1) agent i’s action that specifies IN or OUT at Stage y.1 (which may depend on hy), and

(2) a function γy
i : Hy × {P ⊆ N |i ∈ P} → IR++ that describes agent i’s action γi at Stage y.2 when the history is

given by hy, she participates at Stage y.1, and the set of participants is P . Let P y : Hy × Sy → 2N specify the set
of participants at Stage y.1. History-Independence implies that P y(hy, sy) and γy

i (hy, P ) are independent of hy for
all y, all i and all P ⊆ N (i ∈ P ).
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Namely, we consider a situation where the actions of each agent at any Stage y are not dependent

on the set of participants or the cost sharing at previous stages. There are potentially many

possibilities for history-dependent strategies. However, it is hard to predict how other agents

may alter their strategies contingent on the past, especially in a non-cooperative situation. The

assumption of history-independence gives a simple guidance to agents, and thus it is a natural

starting point.8

Associated with sy, let κy(sy|P ) ≡ (κy
i (s

y|P ))i∈N be an outcome function such that, if
∑

j∈P γj ≥

c(y) in Stage y.2 associated with a set of participants P in Stage y.1, then κy
i (s

y|P ) = gy
i for all

i ∈ P and κy
i (s

y|P ) = 0 for all i 6∈ P , and κy(sy|P ) = 0#N otherwise. Let gy(sy) ≡ κy(sy|P y(sy)).

Given strategy s ≡ (sy)y≤ȳ, when the participants choose to continue up to Stage ỹ and the game

ends at Stage ỹ + 1, the payoff of agent i is Ui(ỹ)−
∑ỹ

y=1 g
y
i (sy).

4 Efficiency Is Compatible with Voluntary Participation

To examine the equilibrium allocations of this game, we apply the subgame-perfect equilibrium.

Our first result is that efficiency is compatible with agents’ voluntary participation decisions. We

first introduce our first proposition and a sketch of the proof (which consists of three steps) to

illuminate how the unit-by-unit game works for an efficient allocation. We also illustrate with a

numerical example employed at Example 1.
8The points we want to make in the following analyses are: (1) efficiency is compatible with agents’ voluntary

participation; (2) only efficient equilibria are robust against refinements. If we allow history-dependent strategies, the
set of efficient subgame-perfect equilibria would expand, but history-independence is sufficient to prove the existence
of efficient subgame-perfect equilibrium. Also, inefficient equilibria can be eliminated by refinement concepts we
examine below, even if we allow history-dependent strategies.
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Proposition 1 There is a subgame-perfect equilibrium supporting an efficient allocation.

In an Appendix, we construct the following subgame-perfect equilibrium strategy s∗.

Step 1 The game ends by Stage y∗ + 1 at s∗.

By Assumption 2, the aggregate benefit falls short of the marginal cost beyond (y∗ + 1)’th unit, so

that nobody has an incentive to participate and bear the cost of the public good.

Step 2 The following strategy exists, which constitutes the equilibrium strategy at Stage y∗:

Stage y∗.1: P y∗(s∗y
∗
) = P y∗ such that:

θP y∗ (y∗) ≥ c(y∗) and θP y∗\{i}(y
∗) < c(y∗) for all i ∈ P y∗ . (4)

Stage y∗.2: for all i ∈ P y∗ , γy∗

i (P y∗) = gy∗

i such that
∑

i∈P y∗ g
y∗

i = c(y∗) and 0 < gy∗

i ≤ ui(y∗)

for all i ∈ P y∗ .

An intuition of voluntary participation induced by the set of participants depicted at (4) is the

following. For every i ∈ P y(s∗y
∗
), if she does not join, the y∗’th unit of the public good is not

provided: since the total benefits that P y(s∗y
∗
) \ {i} can obtain fall short of the marginal cost,

P y(s∗y
∗
) \ {i} cannot allocate the cost-sharing in order for everyone to receive a non-negative net

benefit by participation. Since the net benefit of participation (ui(y∗) − gy∗

i ) is set non-negative,

no agent in P y∗ can be strictly better off by non-participation. In this sense, every i ∈ P y(s∗y
∗
)

is ‘pivotal’, in that her incentive is compatible with the efficient provision of the public good. In
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the case of the binary provision of the public good, such a set of participants is crucial for efficient

provision with voluntary participation (see Palfrey and Rothenthal (1984) and Shinohara (2004)).

The strategies at Stage ŷ (0 < ŷ < y∗) are constructed by backward induction, given the

sequentially-rational behavior at the following stages. Associated with s∗, let gy ≡ (gy
i (s∗y))i∈N be

the equilibrium cost sharing at Stage y, ŷ + 1 ≤ y ≤ y∗, and let gŷ+1,y∗ ≡ (gŷ+1, ..., gy∗) denote

the list of equilibrium cost shares. Let φi(ŷ, y∗; gŷ+1,y∗) ≡ ui(ŷ) +
∑y∗

y=ŷ+1(ui(y) − gy
i ) be agent

i’s benefit of the subsequent stages in addition to her gross marginal benefit at ŷ’th unit. Let

ψP (ŷ, y∗; gŷ+1,y∗) ≡
∑

i∈P φi(ŷ, y∗; gŷ+1,y∗). As the last step of the proof, the following is shown:

Step 3 The following strategy exists, which constitutes the equilibrium strategy at Stage ŷ, 0 <

ŷ < y∗:

Stage ŷ.1: P ŷ(s∗ŷ) = P ŷ such that:

ψP ŷ(ŷ, y∗; gŷ+1,y∗) ≥ c(ŷ) and ψP ŷ\{i}(ŷ, y
∗; gŷ+1,y∗) < c(ŷ) for all i ∈ P ŷ. (5)

Stage ŷ.2: γŷ
i (P ŷ) = gŷ

i for all i ∈ P ŷ such that
∑

i∈P ŷ g
ŷ
i = c(ŷ) and 0 < gŷ

i ≤ φi(ŷ, y∗; gŷ+1,y∗)

for all i ∈ P ŷ.

Here, each agent takes account of the net benefit, including those of subsequent stages, for their

participation and cost-share decisions. The logic of voluntary participation by P ŷ(s∗ŷ) is the same

as P y∗(s∗y
∗
): for every i ∈ P ŷ(s∗ŷ), if she does not join, the total benefits including the benefits at

subsequent stages by P ŷ(s∗ŷ) \ {i} (ψP ŷ\{i}(ŷ, y∗; gŷ+1,y∗)) fall short of the marginal cost (c(ŷ)), so
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that the public good is no longer provided. Again, every i ∈ P ŷ(s∗ŷ) is pivotal. When agents make

the decision to participate in each unit of public good provision, this logic applies until it reaches

the y∗’th unit, so that efficiency is compatible with voluntary participation.

Let us illustrate our points through a numerical example.

Example 1, Continued Consider the case of n = 2 with identical utility functions and a linear

production technology. Condition (3), which prevents the participation of all agents, holds if, for

example,

u(y) = 1.65− 0.15y for y ≤ 10 and u(y) = 0.15 for 11 ≤ y ≤ ȳ. (6)

What about our case of unit-by-unit participation? It can be shown that yf = 4 and y∗ = 7.

Following Steps 2 and 3 of Proposition 1, one can find an efficient subgame-perfect equilibrium by

backward induction. Start with y = y∗ = 7. By (4), P 7 = N . When y = 6, ψN (6, 7; g7,7) > c(6) and

φi(6, 7; g7,7) < c(6) for any g7,7 consistent with the equilibrium cost sharing,9 so that P 6 = N by (5).

When y = 5, it has to be the case for any g6,7 that φi(5, 7; g6,7) > c(5) for some i = 1, 2,10 so that

P 5 = {1} or {2}, depending on the subsequent cost sharing. When y ≤ 4, since the construction of

the equilibrium strategy implies φi(y, 7; gy+1,7) = ui(y) + φi(y+ 1, 7; gy+2,7)− gy+1
i ≥ ui(y) > c(y),

so that P y = {1} or {2} by (5). In summary, the following set of participants is consistent with an
9Consider agent j 6= i’s contribution. Since uj(7) = 0.6, the highest contribution that agent j is willing to

contribute at Stage 7.2 is 0.6, where i can receive the highest marginal benefit ui(7) − 0.4 = 0.2. Therefore,
φi(6, 7; g7,7) ≤ ui(6) + 0.2 = 0.95 < 1 = c(6), so that P 6(s∗6) = N has to be the case at any equilibrium.

10It can be shown that ψN (5, 7; g6,7) = 2u(5) + ψN (6, 7; g7,7) − 1 = 2.5. Since ψN (5, 7; g6,7) =
∑2

i=1
φi(5, 7; g6,7),

it has to be the case that φi(5, 7; g6,7) > 1 for some i = 1, 2.
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efficient subgame-perfect equilibrium:

P y(s∗y) = {1} or {2} if y ≤ yf + 1

= N if yf + 1 < y ≤ y∗.

As you see, the set of the subgame-perfect equilibria is substantially larger than the one ex-

amined in Saijo and Yamato. Condition (3) which prevents the participation of all agents (hence

implementation of y = y∗ in Saijo and Yamato) is irrelevant for the implementation of y = y∗ in

our case. The difference is that, whereas an inefficient provision of y = yf when T 6= N is enforced

in Saijo-Yamato’s mechanism, such an allocation is subject to re-negotiation, as long as there is an

efficiency gain. The unit-by-unit participation mechanism allows to exploit an efficiency gain in a

way which is compatible with agents’ voluntary participation.

From the above example, one can easily see that there is an inefficient subgame-perfect equi-

librium in general. An outcome with P y(sy) = ∅ for Stage y, y > yf is consistent with a subgame-

perfect equilibrium, since each agent will choose OUT given the other agent chooses so. In the

following, we justify that the equilibrium outcomes shown in Proposition 1 are more reasonable to

achieve.

5 Strict Subgame-Perfect Equilibria

The nature of non-excludability inevitably generates multiple equilibria. We propose here to

strengthen the equilibrium. To clarify our point, consider the following example:
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Example 2 Consider the case of n = 3, y∗ = 1, ui(1) = u for all i, and c(1) ∈ (u, 2u). Consider

the following strategy s̃:

Stage 1.1: P 1(s̃1) = N .

Stage 1.2: For all i ∈ N , γ1
i (N) =

c(1)
3

, and γ1
i (P ) = ε < c(1)− u if P 6= N .

If any agent chooses non-participation, the sum of the announced cost-share does not cover c(1),

so that the public good is not produced. Since u > c(1)/3, this strategy constitutes a subgame-

perfect equilibrium. However, N does not satisfy (4).

A questionable behavior in this example is the one at P with |P | = 2. Since u > c(1)/2, there

is a scope for cooperative gain at Stage 1.2 which is not fully exploited, but cooperation emerges

at P = N . The games examined by Muto (1986) and Okada (1993) have similar features, and they

impose conditions stronger than subgame-perfection. Here, we propose a refinement concept of a

strict perfect equilibrium which is similar to Muto (1986).

Let us take any subgame starting from Stage y.1, and denote the payoff of agent i starting

from Stage y by Ry
i : N × IRn

+ × (S ŷ)y<ŷ≤ȳ → IR that makes: (1) a set of participants P ⊆ N at

Stage y.1, (2) the outcome (cost-sharing) gy of Stage y, and (3) the strategies at subsequent stages

by ≡ (sŷ)y<ŷ≤ȳ (with bȳ ≡ ∅), correspond to a real number Ry
i (P, g

y, by). When the game first ends

at Stage ỹ ≥ y + 1 after Stage y, Ry
i (P, g

y, by) ≡
∑ỹ−1

ŷ=y(ui(ŷ) − gŷ
i (sŷ)). When the game ends at

Stage y, Ry
i (P, g

y, by) ≡ 0.

Definition 1 (Strict Subgame-Perfect Equilibria) Associated with strategy s∗, let P y(s∗y) be
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a set of participants at Stage y, gy(s∗y) be the outcome at Stage y. A strategy s∗ is a Strict

Subgame-Perfect Equilibrium iff it is a subgame-perfect equilibrium such that, for all y ≤ ȳ and

i ∈ P y(s∗y),

Ry
i (P

y(s∗y), gy(s∗y), b∗y) ≥ Ry
i (P

y(s∗y) \ {i}, g̃y, b∗y), (7)

for every subgame-perfect equilibrium cost-sharing vector g̃y that is attained at Stage y.2 whose set

of participants is P y(s∗y) \ {i}, and, for all i /∈ P y(s∗y),

Ry
i (P

y(s∗y), gy(s∗y), b∗y) ≥ Ry
i (P

y(s∗y) ∪ {i}, g̃y, b∗y), (8)

for every subgame-perfect equilibrium cost-sharing vector g̃y that is attained at Stage y.2 whose set

of participants is P y(s∗y) ∪ {i}.

According to Muto (1986), the notion of strict subgame-perfect equilibrium is grounded upon the

idea that every agent will not deviate from the equilibrium at each of her decision points even if

she supposes the equilibrium is most favorable to her.11 In Example 2, if agent i deviates from s̃

at Stage 1.1 by choosing OUT , the best scenario for her is the public good produced by N \ {i}.

This can occur at a subgame-perfect equilibrium since u > c(1)/2. Therefore, (7) is not satisfied,

so that s̃ is not a strict subgame-perfect equilibrium.12 In general, we can show the following:
11By the assumption of history-independence, the strategy of the subsequent stages is unchanged. One can change

the last part of the RHS’s to b∗y \ b̃yi , but the best response of agent i against (b∗y
j )j 6=i is b∗y

i .
12Okada (1993) proposed the notion of payoff-dominance under an assumption of identical agents, which basically

requires the agents to adopt a strategy that is Pareto efficient among the participants. The application of his payoff
dominance to the current environment also eliminates an equilibrium illustrated at Example 2.
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Proposition 2 Any strategy constructed at Steps 2 and 3 of Proposition 1 is a strict subgame-

perfect equilibrium. Conversely, at any strict subgame-perfect equilibrium that supports an efficient

allocation, the sets of participants at Stage y∗ and Stage ŷ satisfy (4) and (5) of Proposition 1,

respectively.

6 Coalition-Proofness

When there is no coercive power for participation for a public good provision, we often observe nego-

tiations among members towards the mutual benefits in participation and in cost-share decisions.13

As a reduced form of such a negotiation process, we now examine the implications of group self-

enforcing behavior, based on the theoretical formulations in the literature.

The notion of group self-enforcing behavior is particularly important in understanding collec-

tive decision making. Self-enforceability with respect to individual deviation is insufficient in a

situation where coalitions of agents can arrange plausible and mutually beneficial deviations from

Nash agreements. Bernheim, Peleg and Whinston (1987) propose the notion of a coalition-proof

Nash equilibrium. They also consider games in extensive form, and propose the notion of a per-

fectly coalition-proof Nash equilibrium (PCPNE). Their concept is based on a stronger concept of a

strong perfect equilibrium by Rubinstein (1980), which requires that there is no mutually profitable

deviation at any subgame. Here, we adopt Rubinstein’s equilibrium concept into a unit-by-unit par-
13A real-world example includes the case of Russia’s approval to Kyoto Protocol. Russia’s participation was vital

for all signatories, since the country is the world’s second largest source of greenhouse gases. For example, the
European Union (EU) proposed that Russia ratify the Protocol in exchange for the EU’s support for Russia’s entry
into the World Trade Organization, an issue which the Russian administration had long been trying to achieve. Such
negotiations were essential for Russia’s approval of the treaty.
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ticipation game, which is an extension of Shinohara (2005). Let sy
T ≡ (sy

i )i∈T and b̃yT ≡ (s̃ŷ
T )y<ŷ≤ȳ

(with bȳT ≡ ∅).

Definition 2 (Strong Perfect Equilibria) A strategy profile s∗ is a strong perfect equilibrium

if there exists no y (1 ≤ y ≤ ȳ), T ⊆ N , s̃T , and P ⊇ T such that:

∑
i∈T

Ry
i (P

y(s∗yN\T , s̃
y
T ), gy(s∗yN\T , s̃

y
T ), b∗yN\T , b̃

y
T ) >

∑
i∈T

Ry
i (P

y(s∗y), gy(s∗y), b∗y) or (9)

∑
i∈T

Ry
i (P, κ

y(s∗yN\T , s̃
y
T |P ), b∗yN\T , b̃

y
T ) >

∑
i∈T

Ry
i (P, κ

y(s∗y|P ), b∗y).

The definition of a strong perfect equilibrium ensures that, in addition to the requirement of

subgame-perfection that the action has to be dynamically consistent, no proper subgroup of agents

should be able to make a mutually advantageous deviation from the agreement in any subgame.

Here, a deviation is defined in terms of a sum of utilities among agents in a coalition, which

is stronger than the requirements by Aumann (1959) and Rubinstein (1980). A strong perfect

equilibrium strategy, if it exists, is robust against any deviation even when monetary transfers

among agents in coalitions are possible. This is a demanding concept, and many games that are of

interest do not have a strong perfect equilibrium.14 Another modification applied to this context

is the form of deviation at the second stage. Here, we restrict a class of potential deviations to

subsets of participants, those who attended the meeting for the contribution towards the public

good provision. Whereas it is a natural restriction consistent with our notion of participation, this
14Bernheim, Peleg and Whinston (1987) pointed out that the definition of the strong perfect equilibrium does not

guarantee self-enforcement on the class of deviation. The class of games where such equilibrium exists is limited (see
Aumann (1959) and Rubinstein (1980)).
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point will be discussed later.

We now prove the following:

Proposition 3 There exists a strong perfect equilibrium supporting an efficient allocation. More-

over, no subgame-perfect equilibrium that supports an inefficient allocation constitutes a strong

perfect equilibrium.

Proof We show first that there is a strategy profile s∗ that constitutes a strong perfect equilibrium.

We show next that no inefficient subgame-perfect equilibrium is a strong perfect equilibrium, by

constructing a deviation that is similar to s∗.

Step 1 Let Qy∗ be a set of participants such that:

Qy∗ ∈ arg min
P y∗

θP y∗ (y∗) s.t. (4). (10)

For this Qy∗ , construct a cost-share vector (gy∗

i )i∈Qy∗ as in Step 2 of Proposition 1. For ŷ such that

0 < ŷ < y∗, given gŷ+1,y∗ constructed inductively, let Qŷ be a set of participants such that:

Qŷ ∈ arg min
P ŷ

ψP ŷ(ŷ, y∗; gŷ+1,y∗) s.t. (5). (11)

For this Qŷ, construct a cost-share vector (gŷ
i )i∈Qŷ as in Step 3 of Proposition 1. For these sets of

participants, there is a strategy that is robust against any deviation.

The proof of this step is given in an Appendix.

Step 2 No inefficient subgame-perfect equilibrium is a strong perfect equilibrium.
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Proof of Step 2. Consider an inefficient subgame-perfect equilibrium s̃, at which the game ends

at Stage ỹ. By Step 1 of Proposition 1, ỹ < y∗ + 1. Consider a subgame starting from Stage ỹ.1,

and consider the following deviation: construct a strategy profile for Stage ŷ, y∗ ≥ ŷ ≥ ỹ, in the

same way as those of Step 1 above, by the set of agents ∪y∗>ŷ≥ỹQ
ŷ ∪Qy∗ that satisfy (10) and (11).

By construction, this is a profitable deviation (notice that φi(y, y∗; gy+1,y∗) − gy
i (s∗y) ≥ 0 for all i

and all y ≤ y∗). (End of Proof of Step 2)

By Steps 1 and 2, y∗ units of the public good is produced at a strong perfect equilibrium.

Q.E.D.

An efficient subgame-perfect equilibrium constructed at Step 1 of the proof is an extension of

Shinohara (2005) in the context of binary provision. The sets of participants that satisfy (10) and

(11) are the smallest sets among those which satisfy (4) and (5).

There are two remarks regarding Proposition 3. First, we discuss on our restriction of P ⊇ T

(limiting a class of potential deviations to subsets of participants) at Stage y.2. If ψP (y, y∗; gy+1, y∗) ≥

c(y), this restriction is not necessary: even if a coalitional deviation occurs by a set of agents T in-

cluding participants and non-participants, there is no s̃T such that
∑

i∈T R
y
i (P, κ

y(s∗yN\T , s̃
y
T |P ), b∗yN\T , b̃

y
T )

>
∑

i∈T R
y
i (P, κ

y(s∗y|P ), b∗y). When ψP (y, y∗; gy+1, y∗) < c(y), by setting γy
i (P ) = 0 for all i ∈ P

(which is consistent with the equilibrium), no deviation occurs by T ⊆ N such that

∑
i∈T R

y
i (P, κ

y(s∗yN\T , s̃
y
T |P ), b∗yN\T , b̃

y
T ) >

∑
i∈T R

y
i (P

y(s∗y), gy(s∗y), b∗y): even though a deviation

by participants and the non-participants is aimed at Stage y.2, the total benefit falls short of the
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equilibrium total benefit.15 Therefore, a coalitional deviation does not affect participation and

cost-share decisions along the equilibrium path.

Second, we can show that the strategies shown at Proposition 1 are only strategies that satisfy

a weaker version of a strong perfect equilibrium in the following sense. For such s∗, there is no

y (1 ≤ y ≤ ȳ), T ⊆ N , s̃T , and P ⊇ T such that:

(Ry
i (P

y(s∗yN\T , s̃
y
T ), gy(s∗yN\T , s̃

y
T ), b∗y))i∈T ≥ (Ry

i (P
y(s∗y), gy(s∗y), b∗y))i∈T or

(Ry
i (P, κ

y(s∗yN\T , s̃
y
T |P ), b∗y))i∈T ≥ (Ry

i (P, κ
y(s∗y|P ), b∗y))i∈T ,

where the inequality (αi)i∈T ≥ (βi)i∈T shows αi ≥ βi for all i ∈ T with at least one strict inequality.

When the deviations are allowed with multiple stages, or when monetary transfers among agents

in coalitions are possible, there may be a potential for coalitional deviations.16 The strategy

constructed by the sets of participants that satisfy (10) and (11) can eliminate such potentials.

Two corollaries arise. The first corollary concerns the PCPNE by Bernheim, Peleg and Whinston

(1987). Similar to the strong perfect equilibrium, a PCPNE prevents a mutually advantageous

deviation by a coalition in any subgame.17 However, unlike the strong perfect equilibrium, the
15By setting γy

i (P ) = 0 for all i ∈ P (which is consistent with the equilibrium, since ψP (y, y∗; gy+1, y∗) <

c(y)), the total benefit by T ⊆ N from a deviation is at most
∑

i∈T
ui(y) −

(
c(y)−

∑
j∈P\T

γy
j (P )

)
+∑y∗

ŷ=y+1

∑
i∈T

(
ui(ŷ)− gŷ

i (s∗ŷ)
)

= ψT (y, y∗; gy+1, y∗)− c(y). On the other hand,
∑

i∈T
Ry

i (P y(s∗y), gy(s∗y), b∗y) =

ψT (y, y∗; gy+1, y∗)−
∑

i∈T
gy

i (s∗y) ≥ ψT (y, y∗; gy+1, y∗)− c(y). Therefore, the claim holds.

See also footnote 16 below.
16However, one can show that a deviation at Stages y1 and y2 (y1 < y2) by a coalition T is profitable only if, among

T , some gainers at Stage y1 compromise at Stage y2 to incur some loss that is less than their gains at previous stages.
When the commitment is infeasible, such agents may not agree with the deviation ex post at Stage y2, so that such
deviations show a lack of credibility. Similar comment applies for monetary transfers.

17See Bernheim, Peleg and Whinston (1987, p.11) for a formal definition. The definition of a PCPNE is defined
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class of deviations under consideration are those that satisfy similar criteria: the deviations have

to be dynamically consistent and self-enforcing. Any strong perfect equilibrium is a PCPNE. In

general, neither the existence nor the efficiency of a PCPNE is guaranteed. However, Step 2

of Proposition 3 shows that no subgame-perfect equilibrium that supports an inefficient allocation

constitutes a PCPNE. This is because the deviation constructed at Step 2 is self-enforcing (there

is no further deviation against such deviation, as shown at Step 1).

Another corollary is a relationship between a strict subgame-perfect equilibrium and a strong

perfect equilibrium. Although they are conceptually not related, in the context of the unit-by-unit

participation game, every strong perfect equilibrium is a strict subgame-perfect equilibrium (that

is Pareto efficient). We conclude the following:

Corollary 1 (i) There exists a perfectly coalition-proof Nash equilibrium supporting a Pareto ef-

ficient allocation. Moreover, no subgame-perfect equilibrium that supports an inefficient allocation

constitutes a perfectly coalition-proof Nash equilibrium.

(ii) Every strong perfect equilibrium is a strict subgame-perfect equilibrium.

7 Conclusion

Using the conventional model of the public good provision, we constructed a mechanism where

efficiency is compatible with agents’ voluntary participation. The intuition is that every participant

inductively with respect to the number of agents and the number of stages. For a one-stage game with one agent,
PCPNE is a strategy that maximizes the agent’s utility. A strategy is perfectly self-enforcing if the strategy of any
proper subset constitutes a PCPNE at any proper subgame, given the strategy of the others. A strategy is a PCPNE
if it is Pareto efficient among perfectly self-enforcing strategies.
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is ‘pivotal’, in that her incentive is compatible with the efficient provision of the public good. Using

the notions of Rubinstein’s (1980) strong perfect equilibrium and Bernheim, Peleg and Whinston’s

(1987) Perfect Coalition-Proof Nash equilibrium, we showed that only efficient equilibria are robust

against refinements.

It has long been thought that it is difficult to provide a non-excludable public good since

every agent has an incentive to free-ride. This is an important unsolved problem, and we provide

a positive answer to cope with this issue. Furthermore, the unit-by-unit method may have a

practical implication when we face a real provision of a public good, including the resolution of

global environmental problems discussed in the Introduction. We hope that this paper will be a

beginning for further studies of non-excludable public good provision.
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Appendix

Proof of Proposition 1. We show the statement by proving that there is a subgame-perfect

equilibrium s∗ that is efficient.

Step 1 The game ends by Stage y∗ + 1 at s∗.

Proof of Step 1. Suppose that the game continues up to Stage y ≥ y∗ + 1 and ends at Stage

y+1 at s∗. Since all agents in P y(s∗y) prefer to continue the game at Stage y, it has to be the case

that ui(y) − gy
i ≥ 0 for all i ∈ P y(s∗y), which implies that θP y(s∗y)(y) − c(y) ≥ 0 by construction.

However, by Assumption 2, θP (y) ≤ θN (y) < c(y) for all P ⊆ N and all y > y∗. This is a

contradiction. (End of Proof of Step 1)18

Step 2 Suppose that the game continues up to Stage y∗−1. Then a set P y∗ at (4) and a cost-share

vector (gy∗

i )i∈P y∗ constructed in the text constitute the strategy profile at Stage y∗.

Proof of Step 2. By Assumption 2, there is at least one set of participants satisfying (4). We

can find a cost-share vector (gy∗

i )i∈P y∗ that satisfies
∑

i∈P y∗ g
y∗

i = c(y∗) and 0 < gy∗

i ≤ ui(y∗) for

all i ∈ P y∗ .

We now show that the strategy constructed at the text constitutes a subgame-perfect equilib-

rium. If i ∈ P y∗ chooses IN at Stage y∗.1, she obtains the marginal benefit ui(y∗) − gy∗

i when

γi = gy∗

i for all i ∈ P y∗ . This is the highest marginal benefit that she can obtain, since the marginal

18Assumption 1 is implicitly used in this part by supposing that the game finishes in finite stages.
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benefit is 0 if γi < gy∗

i , and if γi > gy∗

i , she pays too much. Suppose that i ∈ P y∗ chooses OUT

at Stage y∗.1. Since θP y∗\{i}(y
∗) < c(y∗), for any cost-share vector (g̃y∗

j )j∈P y∗\{i} that satisfies

∑
j∈P y∗\{i} g̃

y∗

j = c(y∗), there arises agent j ∈ P y∗ \{i} such that uj(y∗)− g̃y∗

j < 0. Since we showed

at Step 1 that the game ends by Stage y∗+1, such agent j will not choose her action to bear the

cost-share of g̃y∗

j . Therefore, the set P y∗ \ {i} chooses not to provide the y∗’th unit of the public

good at any equilibrium, so that agent i receives 0. Therefore, no agent in P y∗ can be strictly

better off by choosing OUT or choosing IN and not cooperating in the cost-share decision, given

the above strategy.

Let i /∈ P y∗ . If agent i chooses IN , then she receives either the marginal benefit of ui(y∗)− g̃y∗

i

(where g̃y∗

i > 0 is determined according to the strategy profile at Stage y∗.2), or she receives 0 (in

the case where the total contribution falls short of c(y∗)). On the other hand, i obtains ui(y∗) > 0

if i selects OUT . Since g̃y∗

i > 0, no agent in N \P y∗ strictly prefers IN to OUT , given that P y∗ is

the set of participants at Stage y∗. (End of Proof of Step 2)

The strategies at Stage ŷ (0 < ŷ < y∗) are constructed by backward induction, given the

sequentially-rational behavior at the following stages:

Step 3 Consider Stage ŷ, 0 < ŷ < y∗. Suppose that, associated with s∗, for all y ∈ {ŷ + 1, ..., y∗},

the strategy s∗y at Stage y is given in a way such that the y’th unit of the public good is produced.

Then a set P ŷ at (5) and a cost-share vector (gy∗

i )i∈P ŷ constructed in the text constitute the strategy

profile at Stage ŷ.
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Proof of Step 3. For ŷ = y∗ − k (0 < k < y∗), we construct inductively a set P y∗−k at (5) and

a cost-share vector gy∗−k ≡ (gy∗−k
i (s∗y

∗−k))i∈N as claimed in the text. First, by the construction

of (gy∗

i )i∈P y∗ at Step 2, with gy∗

i = 0 for all i 6∈ P y∗ , ui(y∗) ≥ gy∗

i for all i ∈ N . Notice that, if

φi(y∗−(k−1), y∗; gy∗−k+2,y∗) ≥ g
y∗−(k−1)
i , then φi(y∗−k, y∗; gy∗−k+1,y∗) = ui(y∗−k)+φi(y∗−(k−

1), y∗; gy∗−k+2,y∗)− g
y∗−(k−1)
i > 0 for all i (where we adopt a convention that φi(y∗, y∗; gy∗+1,y∗) ≡

ui(y∗)). Notice also that ψN (y∗ − k, y∗; gy∗−k+1,y∗) = θN (y∗ − k) +
∑y∗

y=y∗−k+1(θN (y) − c(y)) >

c(y∗ − k) by Assumption 2. Then, for ŷ = y∗ − k, we can find inductively a set P ŷ at (5) and

assign a cost-share vector (gŷ
i )i∈P ŷ such that

∑
i∈P ŷ g

ŷ
i = c(ŷ) and 0 < gŷ

i ≤ φi(ŷ, y∗; gŷ+1,y∗) for all

i ∈ P ŷ, with gŷ
i = 0 for all i 6∈ P ŷ.

Analogous to Step 2, given the strategy of the others, no agent in P ŷ can be strictly better off

by choosing OUT or choosing IN and not cooperating in the cost-share decision, and no agent in

N \ P ŷ strictly prefers IN to OUT . (End of Proof of Step 3)

By Assumption 2, an outcome of the game is efficient if the participants choose to continue up

to Stage y∗ and the game ends at Stage y∗ + 1. The above argument shows that we can construct

a strategy that is consistent with the agents’ backward induction behavior where the game ends at

Stage y∗ + 1. Q.E.D.

Proof of Proposition 2. Let s∗ be a strategy constructed at Steps 2 and 3 of Proposition 1. We

have shown in the proof of Proposition 1 that, for all y ≤ ȳ and i ∈ P y(s∗y), the set P y(s∗y) \ {i}

chooses not to provide the y’th unit of the public good at every subgame-perfect equilibrium.
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Therefore, Ry
i (P

y(s∗y) \ {i}, g̃y, b∗y) = 0. On the other hand, Ry
i (P

y(s∗y), gy(s∗y), b∗y) ≥ 0, so that

(7) is satisfied. Similarly, (8) has to be satisfied.

To show the second part of the proposition, let s∗ be a strict subgame-perfect equilibrium at

which an efficient allocation is attained. First, consider a subgame beginning from Stage y∗.1. Let

P y∗(s∗y
∗
) be a set of participants that is attained in Stage y∗.1 at s∗. Note that θP y∗ (s∗y∗ )(y

∗) ≥

c(y∗). Suppose, on the contrary, that P y∗(s∗y
∗
) satisfies θP y∗ (s∗y∗ )\{i}(y

∗) ≥ c(y∗) for some i ∈

P y∗(s∗y
∗
). In this subgame, agent i obtains a payoff of ui(y∗)− gy∗

i at Stage y∗ at the equilibrium.

On the other hand, if agent i deviates from IN to OUT at Stage y∗, then, applying Step 2 of

Proposition 1, there is a strategy g̃y∗ at which the y∗’th unit of the public good is provided, and

agent i receives a payoff of ui(y∗). Since gy∗

i > 0, agent i may receive the higher payoff if she

deviates. This is a contradiction.

Let y ∈ {1, . . . , y∗− 1} and consider a subgame that starts from Stage y.1. Let P y(s∗y) be a set

of participants that is attained at s∗ in Stage y.1. Since s∗ supports an efficient allocation, P y(s∗y)

satisfies ψP y(s∗y)(y, y∗; gy+1,y∗) ≥ c(y). Let us suppose that ψP y(s∗y)\{i}(y, y∗; gy+1,y∗) ≥ c(y) for

some i ∈ P y(s∗y). Note that agent i obtains the same payoff between Stage (y + 1).1 and Stage

y∗.2. Hence, it is sufficient to focus on the payoffs that is obtained at Stage y. Agent i receive

a payoff ui(y) − gy
i at s∗ in Stage y, while, as in Stage y∗, she can obtain a payoff ui(y) at the

maximum when i selects OUT . Therefore, if she deviates, then she may increase her payoff, which

contradicts the idea that s∗ is a strict subgame-perfect equilibrium. Q.E.D.

29



Proof of Step 1 of Proposition 3. Associated with a strategy s∗, let P y(s∗y) = Qy for all

y ≤ y∗ and P y(s∗y) = ∅ for all y > y∗. As to Stage y.2 (y ≤ y∗), as in Steps 2 and 3 of Proposition

1, construct inductively cost-share vectors (gy
i )i∈Qy (y ≤ y∗) that satisfy

∑
i∈Qy g

y
i = c(y) and

0 < gy
i ≤ φi(y, y∗; gy+1,y∗) for all i ∈ Qy (where we adopt a convention that φi(y∗, y∗; gy∗+1,y∗) ≡

ui(y∗)). Suppose also:

γy
i (P ) = gy

i for all y ≤ y∗, i ∈ Qy and P ⊆ N such that i ∈ P (12)

= εyi < ui(y) for all y > y∗, i ∈ N and P ⊆ N such that i ∈ P.

We first show that the strategy thus constructed constitutes a subgame-perfect equilibrium.

From Proposition 1, this strategy is immune to any individual deviation at ‘on-path’ cases, i.e., at

any Stage y.2 when the set of participants at that stage is Qy. Consider now ‘off-path’ cases,

i.e., Stage y.2 when the set of participants P is not equal to Qy. Suppose that P satisfies

ψP (y, y∗; gy+1,y∗) < c(y) for some y ≤ y∗ (where we adopt a convention that ψP (y∗, y∗; gy∗+1,y∗) ≡

θP (y∗)). Since ψP∩Qy(y, y∗; gy+1, y∗) −
∑

i∈P∩Qy γ
y
i (P ) ≥ 0, then ψP\Qy(y, y∗; gy+1, y∗) − (c(y) −

∑
i∈P∩Qy γ

y
i (P )) < 0. Therefore, for any sy, if a y’th unit is produced, there arises i ∈ P \Qy such

that φi(y, y∗; gy+1,y∗) − κy
i (s

y|P ) < 0. No such strategy constitutes a best response. Every agent

i ∈ P \ Qy can avoid such a situation by choosing γy
i (P ) that satisfies φi(y, y∗; gy+1, y∗) ≥ γy

i (P ).

Accompanied with such γy
i (P )’s for i ∈ P \ Qy in addition to γy

i (P ), i ∈ P ∩ Qy in (12), one

can conclude
∑

i∈P γ
y
i (P ) ≤

∑
i∈P φi(y, y∗; gy+1, y∗) < c(y), so that the game ends. This consti-

tutes a subgame-perfect equilibrium. Suppose that P satisfies ψP (y, y∗; gy,y∗) ≥ c(y). Suppose
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also that ψP\Qy(y, y∗; gy+1, y∗) <
∑

i∈Qy\P g
y
i . Then ψP (y, y∗; gy+1, y∗) = ψP∩Qy(y, y∗; gy+1, y∗) +

ψP\Qy(y, y∗; gy+1, y∗) < ψP∩Qy(y, y∗; gy+1, y∗)+
∑

i∈Qy\P g
y
i . Since

∑
i∈Qy\P g

y
i ≤ ψQy\P (y, y∗; gy+1, y∗),

this implies that ψP (y, y∗; gy+1, y∗) < ψQy(y, y∗; gy+1, y∗). Since ψP (y, y∗; gy+1, y∗) ≥ c(y), one can

find P y ⊆ P that satisfies (5). This contradicts the definition of Qy. Therefore, if ψP (y, y∗; gy,y∗) ≥

c(y), then ψP\Qy(y, y∗; gy+1, y∗) ≥
∑

i∈Qy\P g
y
i has to be the case. In this case, there exists a list

of strategies (γy
i (P ))i∈P\Qy such that

∑
i∈P\Qy γ

y
i (P ) =

∑
i∈Qy\P g

y
i and φi(y, y∗; gy+1, y∗) ≥ γy

i (P )

for all i ∈ P \Qy. Such strategies, accompanied with (γy
i (P ))i∈P∩Qy in (12), constitute a subgame-

perfect equilibrium strategy where the y’th unit of the public good is produced. Let s∗ be such a

strategy.

We now show that s∗ is robust against any deviation. Suppose T deviates from s∗T ≡ (s∗yT )y≤ȳ

to s̃T ≡ (s̃y
T )y≤ȳ, and the game ends at Stage ỹ at the strategy profile (s∗N\T , s̃T ). No coali-

tional deviation at Stage ỹ > y∗ + 1 is profitable (Step 1 of Proposition 1), so consider the

case of ỹ ≤ y∗ + 1. Notice that, for any deviation s̃T , if the y’th unit of public good is pro-

duced, then gy
i (s∗yN\T , s̃

y
T ) = gy

i if i ∈ Qy \ T and gy
i (s∗yN\T , s̃

y
T ) = 0 if i ∈ (N \ Qy) \ T . There-

fore,
∑

j∈N\T g
y
j (s∗yN\T , s̃

y
T ) =

∑
j∈N\T g

y
j (s∗y) for all y ≤ y∗. Since

∑
i∈N gy

i (s∗y) = c(y) for all

y ≤ y∗, so, if T deviates at Stage y in order to produce the y’th unit, it has to bear a portion

of the marginal cost by c(y) −
∑

i∈N\T g
y
i (s∗yN\T , s̃

y
T ) =

∑
i∈T g

y
i (s∗y). Then, at any Stage y.1,

by deviation, T can at most reallocate the total benefit of
∑

i∈T (ui(y)− gy
i (s∗y)), which is, by

construction, equal to that by choosing s∗T . Moreover, if ỹ < y∗ + 1, T forgoes the benefit of

∑y∗

ŷ=ỹ

∑
i∈T

(
ui(ŷ)− gŷ

i (s∗ŷ)
)

= ψT (ỹ, y∗; gy+1,y∗) −
∑

i∈T g
ỹ
i , which is non-negative by construc-
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tion. In summary,
∑

i∈T R
y
i (P

y(s∗yN\T , s̃
y
T ), gy(s∗yN\T , s̃

y
T ), b∗yN\T , b̃

y
T ) =

∑ỹ−1
ŷ=y

∑
i∈T

(
ui(ŷ)− gŷ

i (s∗ŷ)
)

≤
∑y∗

ŷ=y

∑
i∈T

(
ui(ŷ)− gŷ

i (s∗ŷ)
)

=
∑

i∈T R
y
i (P

y(s∗y), gy(s∗y), b∗y).

On the other hand, consider a deviation at Stage y.2, y ≤ y∗, where P ⊆ N is a set of the partic-

ipants. Suppose that ψP (y, y∗; gy+1, y∗) ≥ c(y). At s∗ constructed above, the y’th unit is produced.

Suppose that T chooses a strategy s̃T to produce the y’th unit of the public good. In order to pro-

duce the y’th unit, T has to bear a portion of the marginal cost by c(y)−
∑

j∈P\T κ
y
j (s

∗y
N\T , s̃

y
T |P ) =

c(y) −
∑

j∈P\T κ
y
j (s

∗|P ) =
∑

i∈T κ
y
i (s

∗|P ). Then, at any Stage y.2, by deviation, T can at most

reallocate the total benefit of
∑

i∈T (ui(y)− κy
i (s

∗|P )). As to the payoffs following Stage y + 1,

the reasoning of the above paragraph applies. In summary,
∑

i∈T R
y
i (P, κ

y(s∗yN\T , s̃
y
T |P ), b∗yN\T , b̃

y
T )

≤
∑

i∈T (ui(y)− κy
i (s

∗|P )) +
∑y∗

ŷ=y+1

∑
i∈T

(
ui(ŷ)− gŷ

i (s∗ŷ)
)

=
∑

i∈T R
y
i (P, κ

y(s∗y|P ), b∗y). If T

chooses s̃T to end the game at Stage y.2, then
∑

i∈T R
y
i (P, κ

y(s∗yN\T , s̃
y
T |P ), b∗yN\T , b̃

y
T ) = 0. Since s∗

satisfies
∑

i∈T R
y
i (P, κ

y(s∗y|P ), b∗y) ≥ 0, the deviation is not profitable.

Suppose that ψP (y, y∗; gy+1, y∗) < c(y). At s∗ constructed above, the y’th unit is not produced,

so that Ry
i (P, κ

y(s∗y|P ), b∗y) = 0 for all i. Consider a deviation by T ⊆ P . Similar to the above

case, in order to produce the y’th unit, T has to bear a portion of the marginal cost by c(y) −

∑
j∈P\T γ

y
j (P ). On the other hand, by construction, γy

j (P ) ≤ φj(y, y∗; gy+1, y∗) for all j ∈ P \ T .

As before, the total benefit following Stage y + 1 is at most
∑y∗

ŷ=y+1

∑
i∈T

(
ui(ŷ)− gŷ

i (s∗ŷ)
)
. In

summary, the total benefit of T by deviation is at most
∑

i∈T ui(y) +
∑

j∈P\T γ
y
j (P ) − c(y) +

∑y∗

ŷ=y+1

∑
i∈T

(
ui(ŷ)− gŷ

i (s∗ŷ)
)
≤ ψT (y, y∗; gy+1, y∗) + ψP\T (y, y∗; gy+1, y∗)− c(y) < 0.

Therefore, we have shown that no deviation is profitable. Q.E.D.
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