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Abstract

In this study, we examine the allocative efficiency of Nash equilibria in a

voluntary participation game in which a public good is provided in units of non-

negative integers. We show that the participation game has a Nash equilibrium

that supports an efficient allocation and that some Nash equilibria are strong

equilibria if at most one unit of the public good can be provided. However, the

Nash equilibria of the participation game do not necessarily support efficient

allocations if up to two units of the public good can be provided. We investigate

the possibility of attaining efficient allocations at Nash equilibria in the case

in which at most two units of the public good can be produced. We prove that

Nash equilibria are less likely to support efficient allocations if the participation

of many agents is needed for the efficient provision of the public good in the

case of identical agents.
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1 Introduction

This paper is a presentation of a participation problem in a mechanism to produce
a pure public good. From the theory of implementation, the construction of a mecha-
nism can solve the “free-rider” problem in economies with public goods. For example,
Bagnoli and Lipman (1989), Jackson and Moulin (1992), and Bag (1997) constructed
mechanisms to implement desirable allocation rules in an economy with a discrete
public good.

However, the implementation theory assumes the participation of all agents, and
each agent lacks the right to determine whether or not to participate in the mecha-
nism. Palfrey and Rosenthal (1984), Saijo and Yamato (1999), and Dixit and Olson
(2000) pointed out the importance of strategic behavior of agents as they decide
whether or not to participate in the mechanisms. In the real world, for example, in
the participation problems in international environmental treaties, agents often have
the right to make such decisions, and they may have an incentive not to enter the
mechanism, hoping that other agents will participate in the mechanism and provide
a public good. This will generate another kind of a free-rider problem.

These authors formulated a participation game in a public good mechanism. In
the game, each agent simultaneously chooses whether or not to participate in the
mechanism. If an agent chooses to participate, he pays the expense requested by the
mechanism, and the public good is produced. If an agent chooses not to participate,
he can enjoy the public good at no cost. Palfrey and Rosenthal (1984) and Dixit
and Olson (2000) analyzed the participation game in a case in which the public good
is discrete and at most one unit of public good is produced. They showed that
there are pure-strategy Nash equilibria that support efficient allocations in the game.
Saijo and Yamato (1999) examined the participation game with a perfectly divisible
public good. They considered a mechanism that implements the Lindahl allocation
rule. They showed that not every agent enters the mechanism at pure-strategy Nash
equilibria and proved that efficient allocations of the economy are not achieved at the
equilibrium of the game in many cases. Hence, it depends on the type of provision
of the public good whether or not the equilibrium of the participation game achieves
efficient allocations.

In this paper, we examine a participation game that is similar to a model presented
in earlier literature. We consider an economy in which the public good is discrete and
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in which there is a mechanism that implements a Pareto efficient and individually
rational allocation rule. First, we examine a participation game in which only one
unit of the public good can be provided, which is similar to Palfrey and Rosenthal
(1984) and Dixit and Olson (2000) (hereafter, this game is called a participation
game with a public project). We investigate the equilibria of the participation game
in a mechanism that implements a proportional cost-sharing rule: the public good
is produced in a way that maximizes the total surplus of participants, and the cost
of producing the public good is distributed among participants in proportion to the
benefits that participants receive from the public good. In this game, there is a pure-
strategy Nash equilibrium at which a Pareto efficient allocation is achieved, and some
of such Nash equilibria are the strong equilibria introduced by Aumann (1959).

Secondly, we extend our analysis to the case of a multi-unit public good. In partic-
ular, we focus on a participation game in which the public good is provided in units
of non-negative integers and only up to two units can be provided. In this case, the
Nash equilibria of the game do not necessarily support the efficient allocation. We
characterize Nash-equilibrium sets of participants, and we examine how possible it is
that efficient allocations are attained at Nash equilibria in the case of identical agents.
We characterize the set of preference parameters in which the efficient allocations are
supportable as Nash equilibria by using a diminishing rate of marginal benefits. We
characterize the range of diminishing rates of marginal benefits in which the efficient
allocations are supported as Nash equilibria. We prove that the range of diminishing
rates of marginal benefits shrinks as the number of participants increases. From this
result, the efficient provision can be achieved at few preference parameters if the par-
ticipation of many agents is necessary for the efficient provision of the public good.
Therefore, we can say that the efficient provision of the public good is rarely achieved
if the cooperation of many agents is necessary for the efficient provision. It also fol-
lows from this result that the inefficient provision of the public good arises even in the
participation game in which only up to two units of the public good can be provided;
this phenomenon is similar to that presented by Saijo and Yamato (1999) in the case
of a perfectly divisible public good.

Before the model is introduced, the relationship between this work and others will be
discussed. First, in the participation game with a public project, our model allows the
possibility that agents have different preferences and the participants share the cost of
the project according to the proportional cost-sharing rule, while agents are identical
and the participants share the cost evenly in the models of Palfrey and Rosenthal
(1984) and Dixit and Olson (2000). The introduction of the proportional cost-sharing
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rule when agents are heterogeneous would be a natural extension of models presented
in earlier literature. Since the proportional cost-sharing rule can be implemented by
mechanisms of Jackson and Moulin (1992), the participation problem with a public
project in this paper can be interpreted as a participation game in the mechanisms
of Jackson and Moulin (1992).

Secondly, we consider the possibility that agents form a coalition and coordinate
the participation decisions. Palfrey and Rosenthal (1984), Saijo and Yamato (1999),
and Dixit and Olson (2000) have focused solely on Nash equilibria, disregarding the
effects. However, there are real-world examples in which agents negotiate the partic-
ipation decisions. In the case of the Kyoto Protocol, the ratification of Russia was
essential to bring the protocol into force. The European Union, which is an envi-
ronmentally conscious group, negotiated with Russia and tried to induce Russia to
ratify the protocol. As a reduced form of such a bargaining process, we investigate
strong equilibria (Aumann, 1959) of the participation game. A strong equilibrium is a
strategy profile that is stable against all possible coalitional deviations. This is a very
demanding equilibrium concept, and many games that are of interest to economists
do not have a strong equilibrium. In this paper, we provide a sufficient condition for
the existence of a strong equilibrium in games of the provision of pure public good.

Third, we extend the models of earlier literature to a participation game with a
discrete and multi-unit public good. Palfrey and Rosenthal (1984), Dixit and Olson
(2000), and Shinohara (2004) examined participation games with a public project,
and these authors proved that the games have Nash equilibria to produce efficient
allocations. However, few studies have investigated whether or not there is a Nash
equilibrium that supports an efficient allocation in the participation game when the
public good is discrete and multi-unit. In this paper, we try to clarify the characteristic
of Nash equilibria when the public good is provided in multiple units and at most two
units of the public good are produced.

2 A participation game with a public project

We consider the problem of undertaking a (pure) public project and distributing its
cost. Let n be the number of agents. We denote the set of agents by N = {1, . . . , n}.
Let y ∈ {0, 1} be the public project: y = 1 if the project is undertaken, and y = 0
if not. Let θi > 0 denote agent i’s willingness to pay for the project or benefit from
the project. Let xi ≥ 0 denote a transfer from agent i. Each agent i has a preference
relation which is represented by a quasi-linear utility function Vi(y, xi) = θiy − xi.
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The cost of the project is c > 0.
In this paper, we assume that there exists a mechanism that implements the pro-

portional cost-sharing rule. We consider a two-stage game. In the first stage, each
agent simultaneously decides whether she participates in the mechanism or not. In
the second stage, following the rule of the mechanism, only the agents that selected
participation in the first stage decide the implementation of the project and the dis-
tribution of its cost. As a result, the proportional cost-sharing allocation only for
participants’ preferences is achieved.

Let P be a set of participants and let (yP , (xP
j )j∈N ) be the outcome of the second

stage when P is the set of participants. We denote θP =
∑

j∈P θj for all sets of
participants P : θP is the sum that agents in P are willing to pay for the public
project. For all subsets P of N, #P means the cardinality of the set P .

Assumption 1 For every set of participants P , the allocation to the participants
(yP , (xP

j )j∈P ) satisfies the following conditions:

if θP > c, then xP
i =

θi

θP
c for all i ∈ P and yP = 1, and

if θP ≤ c, then xP
i = 0 for all i ∈ P and yP = 0.

The project is undertaken if and only if the sum that the participants are willing
to pay for the project exceeds the project cost. If the project is undertaken, then
the cost of the project is distributed among the participants in proportion to the the
benefits that the participants receive from the project.

In this paper, we are not concerned with the implementation problem of the pro-
portional cost-sharing rule. However, there are mechanisms in which the proportional
cost-sharing rule is attained at equilibria. For example, Jackson and Moulin (1992)
constructed a multi-stage mechanism which implements the proportional cost-sharing
rule in subgame perfect Nash equilibria and undominated Nash equilibria. In these
mechanisms, agents report an estimate of the collective benefit accruing from the
project and their own benefit for the project. In equilibria of these mechanisms,
agents truthfully announce the collective benefit and their own benefits.

Assumption 2 Let P ⊆ N be a set of participants. We assume xP
i = 0 for all i /∈ P ,

and every non-participant can also consume yP .

Assumption 2 expresses the non-excludability of the project. In this assumption,
participants bear the cost share for the project, but non-participants do not. In spite
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of this, non-participants can benefit from the project.
Given the outcome of the second stage, the participation-decision stage can be

reduced to the following simultaneous game. In the game, each agent i simultaneously
chooses either si = I (participation) or si = O (non-participation), and then the set
of participants is determined. Let P s be the set of participants at an action profile
s = (s1, . . . , sn). Then each agent i obtains the utility Vi(yP s

, xP s

i ) at the action
profile s. That is, if the public project is undertaken, then participants share the
cost of it in proportion to the benefits from the project. Each non-participant can
free-ride the public project. On the other hand, if the project is not carried out, then
the payoffs of both participants and non-participants are zero. We call this reduced
game participation game and formally define as follows.

Definition 1 (Participation game) A participation game is represented by
G =

[
N, Sn = {I, O}n, (Ui)i∈N

]
, where Ui is the payoff function of i which associates

a real number Ui(s) with each strategy profile s ∈ Sn: if P s designates the set of
participants at s, then Ui(s) = Vi(yP s

, xP s

i ) for all i.

Our attention is limited to the pure strategy profiles.
The notions of equilibria of the participation game are defined as follows. The Nash

equilibria of the participation game are defined as usual. First, a definition is given
for a strict Nash equilibrium.

Definition 2 (Strict Nash equilibrium) A strategy profile s∗ ∈ Sn is a strict
Nash equilibrium if, for all i ∈ N and for all ŝi ∈ S \ {s∗i }, Ui(s∗i , s

∗
−i) > Ui(ŝi, s

∗
−i).

Before defining strong equilibrium, some notation is presented. For all D ⊆ N ,
denote the complement of D by −D. For all coalitions D, sD ∈ S#D denotes a
strategy profile for D. For all sN ∈ Sn, denote sN by s.

Definition 3 (Strong equilibrium) A strategy profile s∗ ∈ Sn is a strong equilib-
rium of G if there exist no coalition T ⊆ N and its strategy profile s̃T ∈ S#T such
that

∑
i∈T Ui(s̃T , s∗−T ) >

∑
i∈T Ui(s∗) for all i ∈ T .

A strong equilibrium is a strategy profile at which no coalition, taking the strategies
of others as given, can jointly deviate in a way that increases the sum of the payoffs
of its members. The strong equilibrium in Definition 3 is slightly different from that
originally defined by Aumann (1959). The difference lies in the possibility of monetary
transfers among agents in coalitions. Our definition allows members of coalitions to
freely send monetary transfers to each other, but Aumann (1959)’s definition does
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not. Hence, in our model, members of a coalition can coordinate their participation
decision through monetary transfers. It is noteworthy that the set of strong equilibria
in a game without monetary transfers generally contains the set of strong equilibria
in the game with monetary transfers. However, the converse is not necessarily true.
Obviously, all strict Nash equilibria and all strong equilibria are Nash equilibria.
However, the set of strict Nash equilibria and that of strong equilibria are not always
related by inclusion.

Example 1 Let N = {1, 2, 3}, θ1 = θ2 = θ3 = 3/4, and c = 1. The payoff matrix
of this example is depicted in Table 1, where agent 1 chooses rows, agent 2 chooses
columns, and agent 3 chooses matrices. The first entry in each box is agent 1’s payoff,
the second is agent 2’s, and the third is agent 3’s. There are two types of Nash
equilibria. One is the Nash equilibrium with two participants and the other is the
Nash equilibrium with no participants. Only the Nash equilibria with participation
of two agents are strict Nash equilibria and strong equilibria.

〈Insert Table 1 here.〉

3 Nash equilibria of the participation game

In this section, we characterize the sets of participants attained at Nash equilibria.
The set of feasible allocations is defined as A:

A =

(y, (xj)j∈N ) |xj ≥ 0 for all j ∈ N, y ∈ {0, 1} and
∑
j∈N

xj ≥ cy

 .

Assumption 3 θN > c.

Definition 4 An allocation (y, (xj)j∈N ) is called Pareto efficient if there exists no
feasible allocation (ŷ, (x̂j)j∈N ) such that Vi(ŷ, x̂i) ≥ Vi(y, xi) for all i ∈ N with strict
inequality for at least one i ∈ N .

We, hereafter, consider a case in which Assumption 3 holds. By Assumption 3, the
public project is undertaken at every Pareto efficient allocation. In the next Lemma,
we characterize the sets of participants supported as Nash equilibria.

Lemma 1 (1.1) Let P ⊆ N be such that θP > c. Then, P is supported as a Nash
equilibrium if and only if θP − θi ≤ c for all i ∈ P .
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(1.2) Let P ⊆ N be such that θP ≤ c. Then, P is supported as a Nash equilibrium if
and only if θP + θi ≤ c for all i /∈ P .

Proof. First, we show (1.1). Let P be a set of participants that satisfies θP > c.
Let (yP , (xP

j )j∈P ) denote the allocation when P is the set of participants.
Let us suppose that P is supported as a Nash equilibrium. Then, the following

conditions are satisfied:

Vi(yP , xP
i ) ≥ Vi(yP\{i}, xP\{i}) for all i ∈ P , and

Vi(yP , xP
i ) ≥ Vi(yP∪{i}, x

P∪{i}
i ) for all i /∈ P .

Since θP > c, we have Vi(yP , xP
i ) = θi −

θi

θP
c for all i ∈ P . If P is such that

θP − θj > c for some j ∈ P , then agent j has an incentive to switch from I to

O because Vj(yP\{j}, x
P\{j}
j ) = θj > θj − θj

θP
c = Vj(yP , xP

j ). This contradicts the

assumption that P is attained at a Nash equilibrium. Therefore, we have θP − θi ≤ c

for all i ∈ P . Conversely, suppose that θP − θi ≤ c for all i ∈ P . Then, we have

Vi(yP , xP
i ) = θi −

θi

θP
c > 0 = Vi(yP\{i}, x

P\{i}
i ) for all i ∈ P , and

Vi(yP , xP
i ) = θi > θi −

θi

θP + θi
c = Vi(yP∪{i}, x

P∪{i}
i ) for all i /∈ P.

Hence, P is supportable as a Nash equilibrium.
Secondly, we prove (1.2). Let P be such that θP ≤ c. If θP + θi ≤ c for all

i /∈ P , then Vi(yP , xP
i ) = Vi(yP\{i}, x

P\{i}
i ) = 0 for all i ∈ P and Vi(yP , xP

i ) =
Vi(yP∪{i}, x

P∪{i}
i ) = 0 for all i /∈ P . Hence, P is attained at a Nash equilib-

rium. Conversely, suppose that P is supported as a Nash equilibrium. Then, we
have Vi(yP , xP

i ) ≥ Vi(yP∪{i}, x
P∪{i}
i ) = 0 for all i /∈ P . Since θP ≤ c, we obtain

Vi(yP , xP
i ) = 0 for all i /∈ P . If there exists agent j /∈ P such that θP + θj > c, then

we obtain Vj(yP∪{j}, x
P∪{j}
j ) = θj −

θj

(θP + θj)
c =

θj

(θP + θj)
(θP + θj − c) > 0. This

means that agent j has an incentive to deviate, which is a contradiction. Therefore,
it follows that θP + θi ≤ c for all i /∈ P . ¥

In the following Lemma, we show that there is a set of participants that satisfies
(1.1) of Lemma 1.

Lemma 2 There exists a set of participants that satisfies (1.1) of Lemma 1 under
Assumption 3 in the participation game. Therefore, there is a Nash equilibrium at
which the project is carried out in the game.
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Proof. Let P be a set of participants such that:

P ∈ arg min
Q⊆N

θQ such that θQ > c. (1)

Note that there is at least one set of participants R satisfying θR > c by Assumption
3. If there is some j ∈ P such that θP −θj > c, then θP > θP\{j} > c. This contradicts
(1), since θP is not the minimal number. Hence, P satisfies θP > c and θP − θi ≤
c for all i ∈ P . ¥

Remark 1 The set of Nash equilibria in (1.1) of Lemma 1 coincides with that of strict
Nash equilibria in the participation game. By Lemma 2, a strict Nash equilibrium
exists in the participation game.

Nash equilibria in (1.2) of Lemma 1 are non-strict. Note that, if non-strict Nash
equilibria exist, then the project is not done in the equilibrium, and the allocations
supported as non-strict Nash equilibria are Pareto dominated by the allocations at-
tained at strict Nash equilibria. The following proposition shows that the set of
strict Nash equilibria coincides with the set of Nash equilibria that support efficient
allocations.

Proposition 1 In the participation game, a strategy profile is a strict Nash equilib-
rium if and only if it is a Nash equilibrium at which an efficient allocation is attained.

Proof. First, we prove that every strict Nash equilibrium is a Nash equilibrium
that supports an efficient allocation. Obviously, every strict Nash equilibrium is a
Nash equilibrium. Hence, we need to show that every allocation achieved at a strict
Nash equilibrium is Pareto efficient. Let s ∈ Sn denote a strict Nash equilibrium and
let P s be the set of participants at s. Let us denote the allocation that is attained

at s by (yP s

, (xP s

j )j∈N ). Note that Vi(yP s

, xP s

i ) = θi −
θi

θP s

c for all i ∈ P s and

Vi(yP s

, xP s

i ) = θi for all i /∈ P s. Suppose, on the contrary, that a feasible allocation
(ŷ, (x̂j)j∈N ) Pareto dominates (yP s

, (xP s

j )j∈N ). It must be satisfied that Vi(ŷ, x̂i) = θi

for all i /∈ P s because θi is the greatest payoff of agent i in A. Hence, there is at
least one participant j ∈ P s such that Vj(ŷ, x̂j) > Vj(yP s

, xP s

j ). Let J ⊆ P s be
a set of such participants and let εj = Vj(ŷ, x̂j) − Vj(yP s

, xP s

j ) > 0 for all j ∈ J .

Since Vj(yP s

, xP s

j ) = θj −
θj

θP s

c > 0 for every j ∈ J , we must have ŷ = 1: otherwise,

Vj(ŷ, x̂i) = 0. Then, we have Vj(ŷ, x̂i) = θj − xP
j + εj for all j ∈ J . By the argument
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above,

x̂j = 0 for all j /∈ P s,

x̂j = xP s

j − εj for all j ∈ J , and

x̂j = xP s

j for all j ∈ P s \ J .

Summing up x̂j for all j ∈ N yields
∑

j∈N x̂j =
∑

j∈P s xP s

j −
∑

j∈J εj = c−
∑

j∈J εj <

c, which contradicts the feasibility of (ŷ, (x̂j)j∈N ). Hence, (yP s

, (xP s

i )i∈N ) is Pareto
efficient.

Secondly, every Nash equilibrium that supports an efficient allocation is a strict
Nash equilibrium. Let s ∈ Sn be a Nash equilibrium that attains an efficient alloca-
tion. Denote the set of participants at s by P s. Since the project is done at efficient
allocations, we have θP s > c. Furthermore, it is satisfied that θP s − θi ≤ c for all
i ∈ P s: if there is an agent j ∈ P s such that θP s − θj > c, then agent j has an
incentive to deviate from s because θj > θj − xP s

j . This contradicts the idea that s is
a Nash equilibrium. By Lemma 1 and Remark 1, s is a strict Nash equilibrium. ¥

4 Strong equilibria of the participation game

In this section, we characterize the set of strong equilibria and show that there is a
strong equilibrium in the participation game. By Lemma 2 and Proposition 1, there
is a Nash equilibrium supporting an efficient allocation in the participation game. In
the participation game, not all Nash equilibria that support efficient allocations are
strong equilibria. If a Nash equilibrium supports an efficient allocation, then the grand
coalition does not improve its member payoffs. By the definition of Nash equilibrium,
every agent does not have an incentive to deviate from the Nash equilibrium. However,
in games with more than two agents, coalitions consisting of more than one and less
than n agents may form, and their members may be better off. The following example
indicates that the participation game has a Nash equilibrium that supports an efficient
allocation, but the Nash equilibrium is not necessarily a strong equilibrium.

Example 2 Let N = {1, 2, 3} and let θ1 = θ2 = 8, θ3 = 4, and c = 10. Table 2
shows the payoff matrix of this example. This game has three strict Nash equilibria:
(s1, s2, s3) = (O, I, I), (I,O, I), and (I, I, O). All the strict Nash equilibria support
efficient allocations. We now focus on the strategy profile s∗ = (I, I, O). The payoffs
at s∗ are U1(s∗) = U2(s∗) = 3, and U3(s∗) = 4. Suppose that coalition C = {2, 3}
is formed and deviates from s∗C to s̃C = (O, I). Note that the public project is
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undertaken at (s∗1, s̃C). The payoffs of agents 2 and 3 at (s∗1, s̃C) are U2(s∗1, s̃C) = 8
and U3(s∗1, s̃C) = 2/3, respectively. Hence, the aggregate payoff for C at (s∗1, s̃C) is
26/3, which is greater than the sum of payoffs of C at s∗. Therefore, the strategy
profile s∗ is not a strong equilibrium, while the other strict Nash equilibria are strong
equilibria.

〈 Insert Table 2 here.〉

In Example 2, the sum of the benefits that participants receive from the project is 12
at every strong equilibrium, which is the smallest sum of the benefits of participants
that can be attained in the set of strict Nash equilibria.

4.1 A characterization of strong equilibria

Proposition 2 Let s∗ ∈ Sn denote a strict Nash equilibrium of the participation
game, and let P ∗ be the set of participants at s∗. The strict Nash equilibrium s∗ is a
strong equilibrium of G if and only if there is no coalition T and its strategy profile
ŝT ∈ S#T such that

T ∗
I ( P ∗, θT∗

I \bTI
> θ

bTI\T∗
I

> 0, and θP∗ − θT∗
I \bTI

+ θ
bTI\T∗

I
> c, (2)

where T ∗
I = {i ∈ T |s∗i = I} and T̂I = {i ∈ T |ŝi = I}.

Before proving this proposition, we show the following lemma.

Lemma 3 In the participation game, only the coalitional deviations from a strict
Nash equilibrium that satisfy (2) increase the sum of the payoffs to the members of
the coalition.

Proof. Let s∗ denote a strict Nash equilibrium of the participation game. Denote
the set of participants at s∗ by P ∗. Let T denote a coalition and let ŝT denote a
profile of strategies for T . Let us denote the set of participants at (ŝT , s∗−T ) by P̂ . If
we designate T ∗

I = P ∗ ∩ T and T̂I = P̂ ∩ T , then P̂ = (P ∗ \ (T ∗
I \ T̂I)) ∪ (T̂I \ T ∗

I ).
Note that θ

bP = θP∗ − θT∗
I \bTI

+ θ
bTI\T∗

I
.

Claim 1 If θ
bP ≥ θP∗ , then the deviations by T from s∗ are not profitable:∑

i∈T Ui(s∗T , s∗−T ) ≥
∑

i∈T Ui(ŝT , s∗−T ).

11



Proof of Claim 1. The sum of the payoffs of agents in T at s∗ is

θT −
θT∗

I

θP∗
c > 0, (3)

and that at (ŝT , s∗−T ) is

θT −
θ

bTI

θ
bP

c. (4)

Subtracting (4) from (3) yields

−
θT∗

I

θP∗
c +

θ
bTI

θ
bP

c

=
c

θP∗θ
bP

(θP∗θ
bTI

− θ
bP θT∗

I
)

=
c

θP∗θ
bP

(
θP∗θ

bTI
− θT∗

I

(
θP∗ − θT∗

I \bTI
+ θ

bTI\T∗
I

))
=

c

θP∗θ
bP

(
θP∗

(
θ

bTI
− θT∗

I

)
− θT∗

I

(
θ

bTI\T∗
I
− θT∗

I \bTI

))
.

Since θ
bTI

− θT∗
I

= θ
bTI\T∗

I
− θT∗

I \bTI
, we obtain

c

θP∗θ
bP

(
θP∗ − θT∗

I

) (
θ

bTI\T∗
I
− θT∗

I \bTI

)
. (5)

We have θP∗ −θT∗
I
≥ 0 because T ∗

I ⊆ P ∗. Since θ
bP ≥ θP∗ , we obtain θ

bTI\T∗
I
≥ θT∗

I \bTI
.

Therefore, (5) is greater than or equal to zero. (End of Proof of Claim 1)

By Claim 1, the deviations by T satisfy θP∗ > θ
bP if the deviations are profitable.

Since θP∗ > θ
bP , we obtain θT∗

I \bTI
> θ

bTI\T∗
I
.

Claim 2 If θ
bP ≤ c, then the deviations by T are not profitable.

Proof of Claim 2. Note that the project is not undertaken at (ŝT , s∗−T ) if θ
bP ≤ c.

Thus, the sum of the payoffs that the members of T receive after the deviation is zero.
Since (3) is more than zero, the deviations by T such that θ

bP ≤ c are not profitable.
(End of Proof of Claim 2)

From Claim 1 and Claim 2, θP∗ > θ
bP > c must be satisfied so that the deviations by

T are profitable. By Lemma 1, θP∗−θi ≤ c for all i ∈ P ∗. Therefore, θP∗−θT∗
I \bTI

≤ c.
By Claim 2, θ

bP = θP∗ − θT∗
I \bTI

+ θ
bTI\T∗

I
> c. Thus, we have θ

bTI\T∗
I

> 0. Accordingly,
it follows that θP∗ > θ

eP > c and θT∗
I \bTI

> θ
bTI\T∗

I
> 0.
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Claim 3 If T ∗
I = P ∗, then the deviations by T are not profitable.

Proof of Claim 3. Note that the difference between the sum of the payoffs that the
members of T receive at s∗ and that at (ŝT , s∗−T ) is equal to (5). Therefore, the two
payoffs are equal if T ∗

I = P ∗. (End of Proof of Claim 3)

By Claims 1, 2, and 3, only the deviations by T that satisfy (2) are profitable. ¥

Proof of Proposition 2. The sufficiency of the statement is immediate from
Lemma 3, and the necessity is trivial. ¥

Proposition 2 says that a deviation from a strict Nash equilibrium results in im-
provements if and only if the following situation exists: at a strict Nash equilibrium,
some participants and non-participants form a coalition and can coordinate in a way
in which the sum of the benefits from the project of participants decreases and the
project is undertaken. In this situation, members of the coalition changing their
strategies I to O get benefits, and those who alter O to I suffer losses. However, by
transferring part of the benefits to the agents altering O to I, the members switching
I to O can make up for the losses. As a result, all members of the coalition can
improve their payoffs after this deviation.

From Proposition 2, we confirm that no deviations that increase the sum that
participants are willing to pay for the project are profitable. For example, if a coalition
deviates from a strict Nash equilibrium in such a way that participants at the strict
Nash equilibrium continue to choose participation and some non-participants switch
to participation, then the coalitional deviation is not improving. In the participation
game with a public project, the possibility of monetary transfers decreases the degree of
cooperation. This is in contrast with the results of Carraro and Siniscalco (1993), who
considered a participation game with a perfectly divisible public good. They showed
that participants at a strict Nash equilibrium can induce some non-participants at
the equilibrium to choose participation by transferring money from the participants
to the non-participants if the participants commit themselves to select participation.
We conclude from these results that it depends on the type of the public good whether
or not the monetary transfers can increase the degree of cooperation.

Shinohara (2004) also analyzed a similar participation game in a mechanism that
implements a class of allocation rules including the proportional cost-sharing rule.
However, he assumed that monetary transfers among members in coalitions are im-
possible. He showed that the set of strict Nash equilibria and that of strong equilibria

13



coincide in the participation game without monetary transfers. On the other hand,
when monetary transfers are possible, the set of strict Nash equilibria contains that
of strong equilibria, and the two sets do not necessarily coincide. Therefore, the set of
strong equilibria in the game with monetary transfers is a subset of that in the game
without monetary transfers. Proposition 2 points out the possibility that the set of
strong equilibria may shrink in the presence of the monetary transfers.

4.2 Existence of a strong equilibrium

Proposition 3 A strong equilibrium exists in the participation game with a public
project.

Proof. Let Pmin be such that Pmin ∈ arg minP⊆N θP subject to θP > c. Since
Pmin satisfies θP min −θi ≤ c for every i ∈ Pmin, Pmin is supportable as a strict Nash
equilibrium. Let smin ∈ Sn be the strict Nash equilibrium at which Pmin is the set
of participants. We show that smin is a strong equilibrium. By Proposition 2, it is
sufficient to show that there is no deviation that satisfies (2).

Let T be a coalition and let sT be a profile of strategies for T . Let us denote
Tmin

I = {i ∈ T |smin
i = I} and TI = {i ∈ T |si = I}. Note that the set of

participants at (sT , smin
−T ) is (Pmin ∪ (TI\Tmin

I ))\(Tmin
I \TI). Let us define P̃ :=

(Pmin ∪ (TI\Tmin
I ))\(Tmin

I \TI).
If T deviates in a way that satisfies θ

eP > c, then we must have θ
eP ≥ θP min > c

because θP min is the smallest sum of participants’ benefits that is attained at strict
Nash equilibria. Then, we have θT min

I \TI
≤ θTI\T min

I
, which indicates that T can not

deviate in a way that satisfies (2). Theorefore, smin is a strong equilibrium of the
participation game. ¥

From Proposition 2, the set of strict Nash equilibria contains that of strong equi-
libria, but the converse is not always true. However, in the case of identical agents,
every strict Nash equilibrium is a strong equilibrium.

Corollary 1 Suppose that agents are identical: θi = θj for all pairs of agents {i, j}.
Then, all strict Nash equilibria are strong equilibria in the participation game.

Proof. Let θ = θi for all i ∈ N and let P be a set of participants that is supported as
a strict Nash equilibrium. By Lemma 1, P satisfies #P θ > c and (#P − 1)θ ≤ c, or
c

θ
< #P ≤ c

θ
+1. Since #P is a natural number, we find from these inequalities that

#P is unique. Therefore, #P θ is the smallest sum of the benefits that participants
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receive from the project in the set of strict Nash equilibria. In the proof of Proposition
3, we show that a strict Nash equilibrium at which the sum of the benefits of the
participants is the smallest in the set of strict Nash equilibria is strong. Thus, P is
attained at a strong equilibrium of the game. ¥

Although the set of Nash equilibria and that of strong equilibria are subsets of that
of Nash equilibria, it is not evident whether the two sets have an inclusion relation.
In the participation game, strict Nash and strong equilibria are both non-empty, and
the set of strong equilibria is included in that of strict Nash equilibria. This is an
interesting aspect of our model.

The results of this paper contrast with those of a participation game with a perfectly
divisible public good. In the participation game with a perfectly divisible public good,
Nash equilibria frequently support inefficient allocations, and there is not necessarily
a strong equilibrium (Saijo and Yamato, 1999; Shinohara, 2003). In addition, in
the standard game of the voluntary contribution to a perfectly divisible public good,
Nash-equilibrium allocations are not efficient. Hence, a strong equilibrium does not
exist in the voluntary contribution game. However, in the participation game with
a public project, there is a Nash equilibrium that supports an efficient allocation.
Moreover, there is a strong equilibrium in the participation game, and only efficient
allocations can be attained at strong equilibria. This is another interesting aspect of
our model.

The following theorem summarizes the results that have been obtained so far.

Theorem In the participation game with a public project, (i) there is a Nash equilib-
rium at which the efficiency of an allocation is achieved, (ii) the set of Nash equilibria
that supports efficient allocations coincides with the set of strict Nash equilibria, (iii)
a strong equilibrium exists, and (iv) the set of strict Nash equilibria includes that of
strong equilibria, but the converse inclusion relation does not necessarily hold.

Remark 2 Let us consider the participation game in which the project is undertaken
if and only if the sum of the benefits that participants receive from the project is more
than or equal to the cost c: for all sets of participants P , θP ≥ c if and only if yP = 1.
In this participation game, there are not necessarily strict Nash equilibria. However,
the game has a Nash equilibrium at which efficient allocations are attained. Every set
of participants at Nash equilibria that support efficient allocations is characterized
as P ⊆ N with θP ≥ c and θP − θi < c for all i ∈ P . We can show that the game
has a strong equilibrium and the set of strong equilibria is included in that of Nash
equilibria that supports efficient allocations in this participation game.
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5 Participation games with a multi-unit public good

5.1 A participation game in which at most two units of the public good

can be produced

In this section, we consider a participation game with a multi-unit public good.
The participation game with a multi-unit public good consists of two stages. In the
first stage, agents simultaneously choose I or O, and the agents that select I choose
the level of the public good and share the cost of the public good in the second stage.
However, in the participation game with a multi-unit public good, the level of the
public good is assumed to take zero, one , or two. Let Y be a public good space
such that Y =

{
(y1, y2) ∈ {0, 1}2|y1 ≥ y2

}
: if y1 = y2 = 1, then two units of the

public good are produced; if y1 = 1 and y2 = 0, then one unit of the public good
is produced; if y1 = y2 = 0, then zero units of the public good are produced. Let
c > 0 be a constant cost of producing one unit of the public good. Let θk

i > 0 denote
agent i’s marginal benefit from the k-th unit of the public good. Each agent i has
a preference relation that is represented by the utility function Vi : Y × R+ → R+,
which associates a real value Vi(y, xi) =

∑
k∈{1,2} θk

i yk − xi with each element (y, xi)
in Y × R+. We denote θk

P =
∑

j∈P θk
j for all k ∈ {1, 2} and for all P ⊆ N . Let us

assume that θ1
i > θ2

i for all i ∈ N and θ2
N > c. This implies that two units of the

public good are produced at every Pareto efficient allocation.
The following is the assumption regarding to the second-stage outcomes.

Assumption 4 Let P be a set of participants, and let (yP , (xP
j )j∈P ) be the allo-

cation for the participants. Let us assume that the allocation satisfies the following
conditions.

(C.1) yP = max{k ∈ {0, 1, 2} | θk
P − c > 0}. (Surplus Maximization)

(C.2)
∑

j∈P xP
j = yP c. (Budget Balance)

(C.3) Vi(yP , xi) ≥ 0 for every i ∈ P . (Individual Rationality)
(C.4) xP

i > 0 for every i ∈ P . (Positive Cost Burden)

From (C.1), the participants produce the public good in a way that maximizes the
surplus of the participants. The cost of the public good is distributed in a way that
satisfies the conditions of budget balance and individual rationality. Every participant
shares a positive cost.
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Many allocation rules satisfy (C.1), (C.2), (C.3), and (C.4). For example, the
unit-by-unit proportional cost-sharing rule introduced by Yu (2005) satisfies all the
conditions.*1 Yu (2005) constructed the mechanism that implements the unit-by-unit
cost-sharing rule.

In the participation game with a multi-unit public good, there is not necessarily a
Nash equilibrium at which efficient allocations are attained. In the following example,
there is no Nash equilibrium that supports efficient allocations, and strong equilibria
do not exist.

Example 3 Let N = {1, 2, 3, 4}. Suppose that θ1
i = 2 and θ2

i = 0.8 for all i ∈ N

and c = 1. The cost of the public good is assumed to be distributed equally among
participants. Let P be a set of participants. Note that one unit of the public good is
produced if #P = 1, and two units of the public good are provided if #P ≥ 2. Table
3 shows the payoffs to participants and non-participants in this example. From the
table, we can easily find that one and only one agent selects participation at every
strict Nash equilibrium. However, these Nash equilibria are not strong equilibria, since
three non-participants at the Nash equilibrium can gain higher payoffs if all of them
jointly deviate from non-participation to participation; thus, a strong equilibrium
does not exist in this example.

〈Insert Table 3 here.〉

5.2 Existence of Nash equilibria that support efficient allocations

In this subsection, we investigate whether or not a Nash equilibrium supports an
efficient allocation in the participation game with a multi-unit participation game.
For this, we first characterize the set of Nash equilibria at which two units of the
public good are produced.

Proposition 4 Let P be a set of participants. The set of participants P is supported
as a Nash equilibrium and two units of the public good are provided at the equilibrium
if and only if P ⊆ N satisfies (i) θ2

P > c, (ii) θ2
P − θ2

i ≤ c for all i ∈ P , and (iii) if
there is an agent i ∈ P such θ1

P − θ1
i > c, then θ2

i ≥ xP
i .

*1 For every unit of the public good, the unit-by-unit proportional cost-sharing rule allocates the

cost proportional to each agent’s willingness to pay for that unit.
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Proof. (sufficiency) Let P denote a set of participants that satisfies (i), (ii), and
(iii). By (i), two units of the public good are produced if P is a set of participant. By
conditions (ii) and (iii), no agent i ∈ P have an incentive to switch I to O. Clearly,
no agents i /∈ P have an incentive to choose I, given the participation of P . Hence,
P is a set of participants that is supportable as a Nash equilibrium.
(necessity) Suppose that a set of participants P is supported as a Nash equilibrium
and two units of the public good are provided at the equilibrium. Since two units of
the public good are provided, condition (i) must be satisfied. If P do not satisfy (ii),
then there exists agent i such that θ2

P − θ2
i > c. Hence, agent i has an incentive to

deviate from I to O, which is a contradiction. Suppose that there is an agent i ∈ P

such that θ1
P − θ1

i > c and θ2
i < xP

i . Then, he obtains the payoff θ1
i if he chooses O,

and he receives the payoff
∑2

k=1 θk
i − xP

i if he chooses I. Since θ2
i < xP

i , he has an
incentive to switch from I to O. This is a contradiction. Therefore, P satisfies (i),
(ii), and (iii). ¥

We determine whether or not two units of the public good are produced at a Nash
equilibrium. First, consider the following case:

Case 1 There exists a set of participants P such that θ1
P − θ1

i ≤ c for all i ∈ P and
θ2

P > c.

Proposition 5 In Case 1, there is a set of participants that is supported as a Nash
equilibrium of the participation game.

Proof. Let P ⊆ N be such that θ1
P − θ1

i ≤ c for all i ∈ P and θ2
P > c. Note that

θ2
P −θ2

i ≤ θ1
P −θ1

i ≤ c for every i ∈ P , in which the first inequality holds with equality
if P \ {i} is empty. Hence, P is a Nash-equilibrium set of participants, and two units
of he public good are provided.

¥

Next, we proceed with our analysis in Case 2:

Case 2 For every P ⊆ N , if P satisfies θ2
P > c, then θ1

P\{i} > c for some i ∈ P .

Proposition 6 Let P ⊆ N be a set of participants such that θ1
P\{i} > c for every

i ∈ P and θ2
P > c. Then, P is a Nash-equilibrium set of participants if and only if

#P = 2, θ2
i = θ2

j = c, and xP
i = xP

j = c for every i, j ∈ P .

18



Proof. Let P ⊆ N be a set of participants such that θ1
P\{i} > c for every i ∈ P and

θ2
P > c. Since θ1

P\{i} > c for every i ∈ P , we have #P ≥ 2.

(sufficincy) Let us suppose that P satisfies #P = 2, θ2
i = θ2

j = c, and xP
i =

xP
j = c for every i, j ∈ P . Then, we have Vi(yP , xP

i ) = θ1
i + θ2

i − xP
i = θ1

i and

Vi(yP\{i}, x
P\{i}
i ) = θ1

i for every i ∈ P . From these conditions, P is supported as a
Nash equilibrium of the participation game.
(necessity) Suppose that P is supported as a Nash equilibrium of the participation
game. Suppose, without loss of generality, that P = {1, 2, . . . , l}, in which l ≥ 2, and
θ2
1 ≥ θ2

2 ≥ · · · ≥ θ2
l . Then, there is αi ∈ (0, 1] for every i ∈ P such that θ2

i = αiθ
2
1.

Note that 1 = α1 ≥ α2 ≥ · · · ≥ αl > 0.
From Proposition 4, P satisfies the following conditions:∑

i∈P

αiθ
2
1 > c. (6)(∑

i∈P

αi − αj

)
θ2
1 ≤ c for every j ∈ P . (7)

αjθ
2
1 ≥ xP

j for every j ∈ P . (8)

We obtain from (6) that θ2
1 > c/

∑
i∈P αi. Since

∑
i∈P αi − αl ≥

∑
i∈P αi − αj for

every j ∈ P , (7) implies θ2
1 ≤ c/(

∑
i∈P αi − αl). It follows from (8) that θ2

1 ≥ xP
j /αj

for every j ∈ P . By these conditions, we must have

c∑
i∈P\{l} αi

−
xP

j

αj
≥ 0 for every j ∈ P (9)

so that P satisfies (6), (7), and (8). It follows from (9) that

1
αj

∑
i∈P\{l} αi

αjc − xP
j

∑
i∈P\{l}

αi

 ≥ 0 for every j ∈ P .

We obtain from these conditions that αjc − xP
j

∑
i∈P\{l} αi ≥ 0 for every j ∈ P .

Summing up these conditions for every j ∈ P yields

∑
j∈P

αjc ≥

∑
j∈P

xP
j

  ∑
i∈P\{l}

αi

 = 2c
∑

i∈P\{l}

αi.

Therefore, we have
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αl ≥
∑

i∈P\{l}

αi. (10)

First, we prove that #P = 2 and θ2
i = θ2

j for all i, j ∈ P . Suppose, on the contrary,
that #P ≥ 3. Since α1 ≥ α2 ≥ · · · ≥ αl, we have αl <

∑
j∈P\{l} αj . This is a

contradiction. Therefore, it follows that #P = 2, which indicates l = 2 and α2 ≥ α1.
Condition α2 ≥ α1, together with α1 ≥ α2, implies α1 = α2. Therefore, we have
θ2
1 = θ2

2.
Secondly, we show that θ2

1 = θ2
2 = c and xP

1 = xP
2 = c. Let us define θ2 = θ2

1 =
θ2
2 = c. Since P is a Nash-equilibrium set of participants, θ2 satisfies 2θ2 > c, θ2 ≤ c,

θ2 ≥ xP
1 , and θ2 ≥ xP

2 . From the first two conditions, we have θ2 ∈ (c/2, c]. It must
be satisfied that xP

1 ≤ c and xP
2 ≤ c, because θ2 takes at most c. Since xP

1 +xP
2 = 2c,

we have xP
1 = xP

2 = c. Then, θ2 = c must be satisfied in order that P is supported
as a Nash equilibrium of the participation game. ¥

Corollary 2 Suppose that agents’ preferences are identical: for every k ∈ {1, 2} and
for every i, j ∈ N , θk

i = θk
j . Then, in Case 2, there is a Nash equilibrium that

supports efficient allocations if and only if there is a set of participants P such that
#P = 2, θ2

i = θ2
j = c, and xP

i = xP
j = c for all i, j ∈ P .

Proof. Suppose that agents’ preferences are identical. Then, for every P ⊆ N with
θ2

P > c, if θ1
P − θP

i > c for some i ∈ P , then θ1
P − θP

i > c for every i ∈ P . Thus,
it follows from Proposition 6 that there is a Nash equilibrium that supports efficient
allocations if and only if there is a set of participants P such that #P = 2, θ2

i = θ2
j = c,

and xP
i = xP

j = c for all i, j ∈ P . ¥

From Proposition 5 and Corollary 2, we can demonstrate that, in the case of iden-
tical agents, the public good is less likely provided efficiently if the participation of
many agents is needed for the efficient provision of the public good. Suppose that all
agents receive a (marginal) benefit θk > 0 from the k-th unit of the public good for
every k ∈ {1, 2}. Let (θ1, θ2) ∈ R2

++ be a profile of the marginal benefits. Note that
θ1 > θ2. If a Nash equilibrium exists such that p ≥ 1 agents enter the mechanism
and two units of the public good are produced, then we have pθ2 > c ≥ (p − 1)θ2.
Note that pθ1 > pθ2 > c, but it is not clear whether (p − 1)θ1 > c holds or not.
From Proposition 5, the participation of p agents is attained at a Nash equilibrium if
(p− 1)θ1 ≤ c. Hence, if (θ1, θ2) satisfies pθ2 > c ≥ (p− 1)θ1, then a Nash equilibrium
supports the participation of p agents. If (p − 1)θ1 > c, then the participation of p
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agents is attained at a Nash equilibrium if and only if p = 2, θ2 = c, and all of p agents
pay c from Corollary 2. From these conditions, we can show the set of parameters at
which the public good is provided efficiently in Figures 1, 2, and 3.

In the case of p = 1, one agent chooses participation, and two units of the public
good are provided in a Nash equilibrium if and only if θ2 > c. The set of profiles
(θ1, θ2) that satisfies θ2 > c are shown in Figure 1. In this case, the public good is
produced efficiently if and only if (θ1, θ2) is in the shaded area of Figure 1. In the
case of p = 2, the efficient provision of the public good is achieved if either one of the
following conditions is satisfied:

(i) θ1 ≤ c and θ2 >
c

2
(ii) θ1 > θ2 = c

The set of (θ1, θ2) that satisfies (i) or (ii) is depicted in Figure 2: (θ1, θ2) in the shaded
triangle satisfies (i), and B in Figure 2 is the set of preference parameters that satisfy
(ii). In the case of p ≥ 3, the efficient provision of the public good is supportable
as a Nash equilibrium if and only if (θ1, θ2) satisfies θ1 ≤ c

p − 1
and θ2 >

c

p
. The

shaded area in Figure 3 is the range of (θ1, θ2) at which the public good is provided
efficiently.

Note that, under the condition of (p− 1)θ1 > c, the efficient provision of the public
good is attained at an equilibrium only if p = 2. From Corollary 2, a Nash equilibrium
supports the efficient provision of the public good only if θ2 = c, even though p = 2
and (p− 1)θ1 > c are satisfied. Thus, the range of the efficient provision of the public
good consists largely of (θ1, θ2), which satisfies pθ2 > c ≥ (p − 1)θ1 and is depicted
as a triangular area in Figures 2 and 3. Note that (θ1, θ2) in these triangular areas
satisfies

1 >
θ2

θ1
>

(
c

p

)/(
c

p − 1

)
= 1 − 1

p
.

Since 1 − 1
p

converges to 1 as the number of participants p becomes large, the range

of the diminishing rate of marginal benefits
θ2

θ1
shrinks as the number of participants

increases. Thus, when the set of participants consists of many agents, the diminishing
rate of the marginal benefits must be low for the set to be supported as a Nash
equilibrium. We can say from this result that the public good is less likely to be
efficiently provided if the participation of many agents is needed for the efficient
provision of the public good.
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〈 Insert Figures 1, 2, and 3 here. 〉

In this section, we confirm that there is not necessarily a Nash equilibrium to sup-
port efficient allocations in the participation game with a multi-unit public good.
Moreover, it is difficult to achieve allocative efficiency when the participation of many
agents is needed to produce the public good efficiently. These results indicate that
strategic behavior in participation decisions often leads to inefficient allocations, even
though a mechanism is constructed in such a way as to implement an efficient alloca-
tion rule. An implication that is similar to Saijo and Yamato (1999) can be derived
even in the participation game in which up to two units of the public good can be
produced.

Remark 3 In Proposition 6, we characterized a Nash-equilibrium set of participants
P under the condition that θ1

P − θ1
i > c for every i ∈ P . This condition holds only

if agents’ preferences are identical or slightly different. However, a set of participants
does not necessarily satisfy this condition if the set of participants is composed of
agents who have different preferences. Thus, in the case of heterogeneous agents,
there may be a set of participants P that satisfies θ2

P > c, θ2
P\{i} ≤ c for every i ∈ P ,

θ1
P\{i} > c for some i ∈ P , and θ1

P\{j} < c for some j ∈ P . The following examples
indicate that such sets of participants may or may not be Nash-equilibrium sets of
participants in the participation game, depending on the preference parameters of the
participants.

Example 4 Let N = {1, 2} and let θ1
1 = 40, θ2

1 = 9, θ1
2 = 7, θ2

2 = 6, and c = 10.
In this example, the costs of producing the public good are distributed according to
a unit-by-unit public good among participants: for every unit of the public good,
the unit-by-unit proportional cost-sharing rule allocates the cost proportional to each
agent’s willingness to pay for that unit. Two units of the public good are produced
only if two agents choose I, and one unit of the public good is provided only when
agent 1 chooses I and agent 2 chooses O. If agent 1 and agent 2 choose I, then the

payoff of agent 1 is θ1
1 + θ2

1 −
θ1
1

θ1
1 + θ1

2

c− θ2
1

θ2
1 + θ2

2

c =
1621
47

≈ 34.49, and that of agent

2 is θ1
2 + θ2

2 −
θ1
2

θ1
1 + θ1

2

c− θ2
2

θ2
1 + θ2

2

c =
353
47

≈ 7.51. Table 4 is the payoff matrix of this

example. In this example, there is a Nash equilibrium at which two agents choose I

and two units of the public good are provided.

〈 Insert Table 4 here.〉
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Example 5 Consider a two-agent participation game in which θ1
1 = 12, θ2

1 = 8,
θ1
2 = 8, θ2

2 = 6, and c = 10. As in Example 4, the costs of producing the public good
are allocated according to the unit-by-unit public good among participants. The
payoff matrix is shown in Table 5. In this game, there is only one Nash equilibrium
at which agent 1 chooses I and agent 2 chooses O. At the equilibrium, one unit of
the public good is produced, and an inefficient allocation arises.

〈 Insert Table 5 here.〉

Agents have greatly different preferences for the public good in Example 4, while
they have relatively similar preferences in Example 5. From these examples, it seems
valid to conjecture that a set of participants is attained at a Nash equilibrium if the
agents’ preferences differ greatly.

6 Conclusion

We have investigated a participation game in the provision of a discrete public
good. First, we examined a case of a public project. We showed that there are Nash
equilibria that achieve allocative efficiency, and some efficient allocations are attained
at strong equilibria in the participation game with a public project. Secondly, we
examined a case in which at most two units of the public good are provided. In this
case, there is not necessarily a Nash equilibrium that supports an efficient allocation.
We proved that, in the case of identical agents, the set of participants consisting
of many agents is less likely a Nash-equilibrium set of participants. Therefore, the
efficient provision of the public good is rarely achieved if the participation of many
agents is needed for the efficient provision of the public good in the case of identical
agents. We found from these results that the assumption that only one unit of the
public good can be produced plays a significant role in the existence of a Nash equi-
librium that supports efficient allocations and that of a strong equilibrium. We also
concluded that strategic behavior in participation decisions leads to inefficiency of
the allocations even in a participation game in which at most two units of the public
good can be produced.

In the case of heterogeneous agents, it is unclear which sets of participants are
supported as Nash equilibria and which conditions guarantee the efficient provision
of the public good at Nash equilibria. Future studies will be needed to establish
conditions under which efficient allocations are attained at Nash equilibria.
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I O

I 5/12, 5/12, 5/12 1/4, 3/4, 1/4
O 3/4, 1/4, 1/4 0, 0, 0

I

I O

I 1/4, 1/4, 3/4 0, 0, 0
O 0, 0, 0 0, 0, 0

O

Table. 1 Payoff matrix of Example 1
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I O

I 4, 4, 2 4/3, 8, 2/3
O 8, 4/3, 2/3 0, 0, 0

I

I O

I 3, 3, 4 0, 0, 0
O 0, 0, 0 0, 0, 0

O

Table. 2 Payoff matrix of Example 2
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The number of participants Payoffs to participants Payoffs to non-participants
0 - 0
1 1 2
2 1.8 2.8
3 32/15 2.8
4 2.3 -

Table. 3 Payoffs of Example 3
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HHHHHH1
2

I O

I 34.49, 7.51 30, 7
O 0, 0 0, 0

Table. 4 The payoff matrix of Example 4
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HHHHHH1
2

I O

I 8.29, 5.71 2, 8
O 0, 0 0, 0

Table. 5 The payoff matrix of Example 5
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Fig. 2 In the case of p = 2, the efficient provision of the public good
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Fig. 3 In the case of p ≥ 3, the efficient provision of the public good is achieved
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