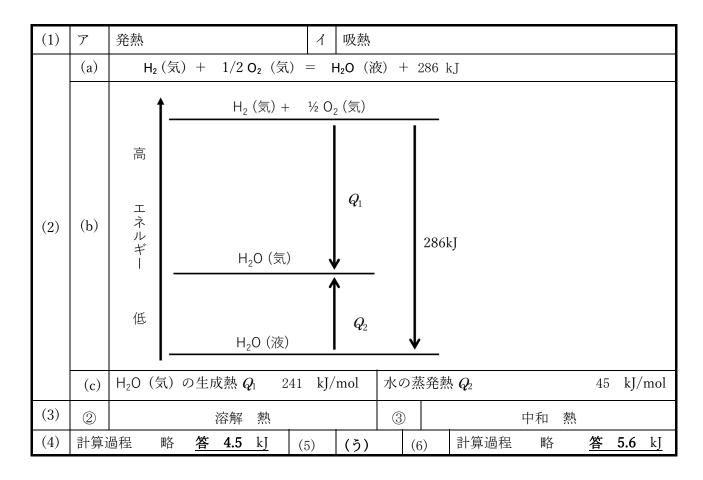
令和5年度入学試験問題(前期日程)


化学

出題意図及び解答例

問題 1

出題意図

反応熱や熱化学方程式に関する理解度を問うた。理解度を評価するため、基礎的な用語を 問うとともに、熱化学方程式やエネルギー図を用いて、論理的に正答を導くことができるか どうか試した。また、反応熱をともなう温度変化の実験を通して、図を読み取る力を問うた。

解答例

※記述問題の正答例は開示していません。

問題 2

出題意図

二酸化炭素に関する反応を取り上げ、化学反応、電離平衡および化学実験に用いる具体的な器具の取り扱い方法などの基礎的知識を問うた。また、中和滴定の結果について正確に理解し、実際の試料に対して定量的に解析できる能力を問うた。

(1)	(a)	: o :: c :: o :									
	(b)	ア	極性			イ直線		ウ	無極性		
	(c)	電離を	示す平	衡式	CO ₂ + H ₂ O ⇄ H ⁺ + HCO ₃ - 液性				酸性(弱酸性)		
	(d)	結晶の種類			分子結晶						
(2)		$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$									
(3)		$CaCO_3 + H_2O + CO_2 \rightarrow Ca(HCO_3)_2$									
(4)		$CO_2 + Ba(OH)_2 \rightarrow BaCO_3 + H_2O$									
(5)	(え)										
	(a)	$Ba(OH)_2 + 2HC1 \rightarrow BaCl_2 + 2H_2O$									
(6)	(b)	計算過程:略			答: <u>0.0183 mol/L</u>						
	(c)	計算過程:略 c)				答:二酸化炭素の物質量 <u>1.7×10⁻⁴ mol</u> 答:体積百分率 <u>0.041 %</u>					

解答例

※記述問題の正答例は開示していません。

問題 3

出題意図

有機化学の分野から芳香族化合物を題材に取り上げ、その性質と合成法に関する基本的な知識を正しく習得できているかを問うた。また、芳香族化合物の性質を化学反応式から理解する力を試した。

	I					T .				
(1)	ア	ケクレ	イド	司じ		ウ	360		J	エ メチル
(1)	オ	ヒドロキシ	力 均	塩化鉄	(III)	キ	クメン		Ź	ウ アセトン
	A	C ₂ H ₅	В		℃H ₃	С	C	H ₃	Г	
(2)			H₃C Û				CH₃			H₃C CH₃
	Е			F СН ₂ ОН			G OCH ₃			
	HOOC									
	H H H									
(3)				+ 3	H ₂ =	H-C -	С-H +	206 k	(J	
						Нή	T H			
		600	1		Н		O C		т	
(4)	(a)	COOF		(b) [$ \begin{array}{c c} c \\ c \\$		(c)	I	
		. COOP	l						v	
(5)) (お)									
		化学反応式	011				ŌН			化合物名
	(a)		OH +	3Br ₂	→	Br_{\bigvee}	Br +	3НВі		2,4,6-トリブロモ
							Br			フェノール
(6)	(b)	略								
		ОН			ЭН		OH	_		ОН
	(c)			Br		Br				Br
		Br		L.			Br			

解答例

※記述問題の正答例は開示していません。

問題 4

出題意図

高分子化合物について化学的な基礎知識と考察力を問うた。特に、ペプチドに関する化学 実験の基礎知識とその作用機序および実験データから構成成分や化学構造を求めるための 理論的な思考力を試した。

正答例

(1)	ア:球状	イ:フィブロ	イン	ウ:カルボキシ(アミノ)					
(1)	エ:アミノ (カルボキシ)	オ:アミド		カ:不斉炭素原子					
(2)	計算過程:略								
(2)	α-アミノ酸Aの数:33	α-アミノ酸]	Bの数:55	α-アミノ酸Cの数:22					
(2)	α-アミノ酸Aの名称:フェ	ニルアラニン	α-アミノ酸	Bの名称: グリシン					
(3)	α-アミノ酸Cの名称: セ	:リン							
(4)	6 種類								
(5)	反応の名称: キサントプロテイン反応								
(5)	理由:略								
(6)	反応の名称: ビウレット!		反応液の色: 赤紫色						
(7)	Ç Ç NH₂-C	oH H₂ ÇH :H-C-NH-CH Ö) -C-NH-CH ₂ - Ö	СООН					

※記述問題の解答例は開示していません。

令和 5 年度 入学試験問題(前期日程) 問題訂正·補足説明

「化学」

【問題冊子】

● 問題訂正

4ページ 1 リード文 下線部②

- (誤) 「水」
- (正) 「多量の水」
- 5ページ 1 (2) (b) 1行目
- (誤) H_2O (気)の生成熱を Q_1 [kJ] 水の蒸発熱を Q_2 [kJ]
- (正) H_2O (気)の生成熱を Q_1 [kJ/mol] 水の蒸発熱を Q_2 [kJ/mol]
- 6ページ 2 (3) 1行目
- (誤) 「溶液の色が薄くなる」
- (正) 「白濁が消える」
- 補足説明

トリペプチドDは固体のまま使用するので、下線部①の反応が起こる。

令和5年度入学試験問題

化 学

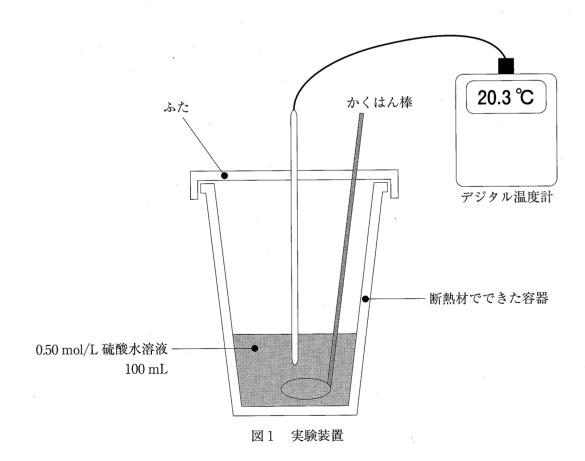
注 意 事 項

- 1. この問題冊子は、試験開始の合図があるまで開いてはいけません。
- 2. 解答用紙は問題冊子とは別になっています。解答は解答用紙の指定されたところに記入しなさい。それ以外の場所に記入された解答は、採点の対象となりません。解答用紙は4枚あります。
- 3. 本学の受験番号をすべての解答用紙の指定されたところへ正しく記入しなさい。氏名を書いてはいけません。
- 4. この問題冊子は、表紙を含めて16ページあります。問題は4ページから10ページにあります。ページの落丁・乱丁及び解答用紙の汚れ等に気付いた場合は、監督者に申し出なさい。
- 5. 問題冊子の余白等は適宜利用しても構いませんが、どのページも切り離してはいけません。
- 6. この問題冊子は持ち帰りなさい。

問題の解答に必要ならば、以下の数値を用いなさい。

原子量 H:1.0 C:12 O:16 Na:23 S:32 Ca:40 Br:80 Ba:137

化合物の構造式を答える場合には、記入例にならって示しなさい。


(記入例)

1 次の文章を読み、設問(1)~(6)に答えよ。

物質の状態が変化する、あるいは化学変化により新しい物質が生成すると、熱の出入りが起こる。これらの変化に伴い発生、または、吸収する熱量を反応熱という。熱を発生しながら進む反応を(ア) 反応、一方で周囲から熱を吸収しながら進む反応を(イ)反応という。

反応熱は、反応の種類によって固有の名称でよばれる。水が関与する反応は下記のようなものがある。25 $^{\circ}$ $^{\circ}$ 1.013×10^5 Pa において 1 mol の水素 H_2 が完全燃焼し、液体の水が生成するときの反応熱は 286 kJ である。水に 1 mol の硝酸アンモニウムを溶かしたときの反応熱は -26 kJ である。 酸化カリウム水溶液を反応させ、水 1 mol が生成したときの反応熱は 56 kJ である。へスの法則を使えば、実際に測定することが難しい反応熱を計算で求めることができる。

ここで、図1のような実験装置を用いて、 硫酸水溶液と水酸化ナトリウム水溶液を混ぜたときの反応 熱の測定を行う。 熱が逃げにくい断熱材でできたふた付きの容器に 0.50 mol/L の硫酸水溶液 100 mL を入れ、温度計で溶液の温度を 30 秒ごとに測り記録した。液温が一定 $(20.3\,^{\circ}\mathbb{C})$ になり 4 分後に、1.0 mol/L の水酸化ナトリウム水溶液 100 mL をこの断熱容器に加え、同様に液温を測定し記録した。その結果、水溶液の温度の時間変化は、図2 のようなグラフになった。

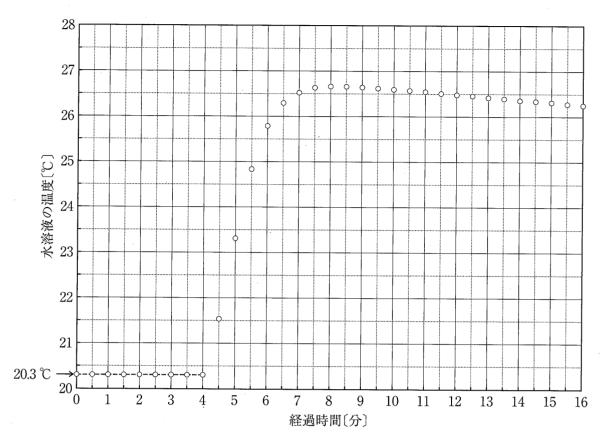


図2 水溶液の温度の時間変化

- (1) 空欄(ア)と(イ)にあてはまる適切な語句を答えよ。
- (2) 下線部①の反応について,以下の問い(a)~(c)に答えよ。
 - (a) この反応を熱化学方程式で示せ。
 - (b) $\mathbf{H}_2\mathbf{O}(\mathfrak{A})$ の生成熱を $Q_1[\mathbf{k}\mathbf{J}]$,水の蒸発熱を $Q_2[\mathbf{k}\mathbf{J}]$ とする。この反応を示すエネルギー図を完成させよ。
 - (c) H−H 結合, H−O 結合, O=O 結合エネルギーをそれぞれ 436, 463, 498 kJ/mol とし, H₂O(気) の生成熱 Q₁ および水の蒸発熱 Q₂ を求めよ。
- (3) 下線部②と③の反応熱を特に何とよぶか答えよ。
- (4) 0.50 mol/L 硫酸水溶液 100 mL に固体の水酸化ナトリウム 4.0 g を加えたときに発生した反応の熱量は 10.1 kJ だった。多量の水に固体の水酸化ナトリウム 4.0 g を溶解するときに発生する反応の熱量を求めよ。計算過程も示せ。
- (5) 下線部④の測定結果を表す図2のグラフ上で、作図によって補正した液温の最高値を示す最も適当 な値を以下の(あ)~(え)の選択肢から選べ。
 - (あ) 26.3℃ (い) 26.7℃ (う) 27.0℃ (え) 27.2℃
- (6) (5)の温度上昇の結果から、硫酸水溶液と水酸化ナトリウム水溶液の混合によって発生した熱量を求めよ。加える水酸化ナトリウム水溶液の温度は 20.3 $\mathbb C$ 、水溶液の密度を 1.0 g/mL、水溶液の比熱を 4.2 J/(g·K)とする。計算過程も示せ。

2 次の文章を読み, 設問(1)~(6)に答えよ。

大気中に 二酸化炭素 CO_2 が含まれているかどうかは、 石灰水で定性的に調べることができる。 しかし、 この方法では二酸化炭素の正確な濃度を求めることは難しい。

実験的には、水酸化バリウム Ba(OH)₂ 水溶液に二酸化炭素を含む空気を通じることで反応させた後、未反応の水酸化バリウムに対して塩酸で中和滴定を行うことで、含まれていた二酸化炭素の物質量を求めることができる。

 $0.0200 \, \mathrm{mol/L}$ の水酸化バリウム水溶液 $100.0 \, \mathrm{mL}$ をコニカルビーカー A に入れ,周りの空気と触れないようにした。このコニカルビーカー A に $25 \, \mathrm{C}$, $1.013 \times 10^5 \, \mathrm{Pa}$ の空気 $10.0 \, \mathrm{L}$ をゆっくり通じたところ,炭酸バリウムの難溶性の白色沈殿が生じた。この沈殿をろ過により分離した後, ろ液 $20.00 \, \mathrm{mL}$ を正確にコニカルビーカー B へ移し,指示薬溶液を数滴加えた。 $25 \, \mathrm{mL}$ ビュレットの $0.00 \, \mathrm{mL}$ の目盛りまで $0.0500 \, \mathrm{mol/L}$ の塩酸で満たした後, コニカルビーカー B の溶液に対して滴定したところ,ビュレットの目盛りが $14.64 \, \mathrm{mL}$ で中和点となった。

- (1) 下線部①の二酸化炭素について,以下の問い(a)~(d)に答えよ。
 - (a) 二酸化炭素の電子式を示せ。
 - (b) 以下の文中の(ア)~(ウ)に入る語句を次の選択肢から選べ。

選択肢:極性,無極性,直線,折れ線

炭素と酸素の間の結合には(ア)があるが、二酸化炭素は分子の形状が(イ)形であり、互いに(ア)を打ち消しあうため、分子全体では(ウ)分子となる。

- (c) 二酸化炭素は水に少量溶ける性質がある。二酸化炭素と水が反応して炭酸水素イオンを生じる電離を表す平衡式を答えよ。また、この反応の結果生じた溶液の液性は酸性か、塩基性か答えよ。
- (d) 二酸化炭素の固体はドライアイスとよばれる。ドライアイスの結晶の種類として適切なものを次の選択肢から選べ。

選択肢:分子結晶, イオン結晶, 共有結合結晶, 金属結晶

- (2) 下線部②について、石灰水中に二酸化炭素を通じると白く濁る。この反応の化学反応式を答えよ。
- (3) 下線部③の理由として、(2)の白濁液に、さらに二酸化炭素を通じ続けると溶液の色が薄くなることが挙げられる。この反応の化学反応式を答えよ。
- (4) 下線部④について、二酸化炭素と水酸化バリウムの反応の化学反応式を答えよ。
- (5) 下線部⑤について、適切な操作として正しいものを以下の(あ)~(え)の選択肢から選べ。
 - (あ) 純水で洗浄したコニカルビーカー B の 20 mL の目盛りまでろ液を入れる。
 - (い) 共洗いしたコニカルビーカー B の 20 mL の目盛りまでろ液を入れる。
 - (う) 共洗いした 20 mL メスフラスコの標線までろ液をとり、純水で洗浄したコニカルビーカーB に移す。
 - (え) 共洗いした 20 mL ホールピペットの標線までろ液をとり、純水で洗浄したコニカルビーカーBに移す。

- (6) 下線部⑥について, 以下の問い(a)~(c)に答えよ。
 - (a) 水酸化バリウムと塩酸の反応の化学反応式を答えよ。
 - (b) コニカルビーカーBに含まれていた水酸化バリウムのモル濃度を、有効数字3桁で求めよ。計算過程も示せ。ただし、指示薬の変色は水酸化バリウムが塩酸と過不足なく反応したときに生じるものとする。
 - (c) 空気 10.0 L 中に含まれていた二酸化炭素の物質量は何 mol か,有効数字 2 桁で求めよ。また,体積百分率は何パーセント(%)か,有効数字 2 桁で答えよ。計算過程も示せ。なお,25 ℃, 1.013×10^5 Pa では,1 mol の気体の体積は 24.4 L とする。ただし,水酸化バリウムと反応する二酸化炭素以外の成分の影響は無視できるものとし,生じた炭酸バリウムの沈殿は水溶液に再溶解しないものとする。また,ろ過前後における水酸化バリウムのモル濃度の変化はないものとする。

3 次の文章を読み,設問(1)~(6)に答えよ。

ベンゼンは、1825年、イギリスのファラデーにより発見された。ベンゼンの構造は、40年後の1865年にドイツの(ア)により提唱された。その構造式は、C-C結合と C=C結合を交互に書いて表されるが、実際には、すべての炭素原子間の結合の長さは(イ)である。

ベンゼンに見られる環状の炭素骨格をベンゼン環といい、ベンゼン環をもつ化合物を芳香族化合物という。ベンゼン環は壊れにくい構造であるため、ベンゼン環の構造が変わる反応は起こりにくい。その安定性について、エネルギーの面から考察する。まず、図3に示した3つの C-C 結合と3つの C=C 結合からなる仮想分子「1,3,5-シクロヘキサトリエン」を考える。

図3 1.3.5-シクロヘキサトリエン

1,3,5-シクロヘキサトリエンに水素を付加させてシクロヘキサンが生成するときの反応熱は、熱化学方程式(i)に基づくと(ゥ)kJ/mol と予想される。しかし、ベンゼンに水素を付加させてシクロヘキサンが生じるときの反応熱を測定したところ、1,3,5-シクロヘキサトリエンの反応熱より 154 kJ/mol小さかった。このことから、ベンゼン環の構造がエネルギー的に安定であることがわかる。

ベンゼンの水素原子1つを(エ)基で置き換えた化合物をトルエンという。トルエンの水素原子1つを(エ)基で置き換えた化合物には、4種類の芳香族化合物 A ~ D が存在する。ポリスチレンのモノマーは、鉄などの触媒存在下、化合物 A から水素を脱離させると得られる。また、ペットボトルなどに用いられるポリエステルの原料となる化合物 E は、コバルトなどの触媒存在下、化合物 B を酸化すると得られる。一方、化合物 C を酸化すると、ジカルボン酸であるフタル酸が生成する。

ベンゼン環に(オ)基が直接結合した構造の化合物をフェノール類という。フェノール類は(カ)水溶液を用いる呈色反応により検出することができる。分子式 C7H8O をもつ芳香族化合物のうち、化合物 Fと G は上記の呈色反応を示さない。F はベンズアルデヒドを還元してつくることができる。フェノールでは、ベンゼン環の特定の位置で置換反応が起こりやすい。例えば、かつては爆薬の原料として使用されていたピクリン酸は、この性質を利用して合成される。また、フェノールの水溶液に臭素水を十分に加えると臭素と置換反応を起こす。フェノールは工業的には(キ)法により製造される。この方法では、イソプロピルベンゼンから最終的にフェノールと(ク)が得られる。

- (1) 空欄(ア)~(ク)にあてはまる適切な語句または数値を答えよ。
- (2) 化合物 A~Gの構造式を答えよ。
- (3) 下線部①に基づいて、ベンゼンに水素を付加させてシクロヘキサンが生じるときの熱化学方程式を示せ。
- (4) 下線部②について,以下の問い(a)~(c)に答えよ。
 - (a) フタル酸の構造式を答えよ。
 - (b) フタル酸を加熱すると分子内で脱水反応が起こり、酸無水物 H が得られる。化合物 H の構造式を答えよ。
 - (c) 酸無水物 H は、酸化バナジウム(V)を触媒として、防虫剤などに用いられる芳香族炭化水素 I を酸化しても得られる。化合物 I の構造式を答えよ。
- (5) 下線部③について、ピクリン酸の構造に基づくとフェノールのニトロ化はベンゼン環のどの位置で 起こりやすいと考えられるか。適当なものを以下の(あ)~(か)の選択肢から選べ。
 - (あ) o位のみ
 - (い) ゕ位のみ
 - (う) p位のみ
 - (え) ο 位と m 位
 - (お) o位とp位
 - (か) m 位と p 位
- (6) 下線部④について, 以下の問い(a)~(c)に答えよ。
 - (a) フェノール1分子と臭素3分子の反応を化学反応式で示せ。また、この反応により生じるフェノール類の化合物名を答えよ。
 - (b) この反応はフェノールの検出にも利用される。臭素水を十分に加えたときに起こる変化を答え よ。
 - (c) フェノールの臭素化では、フェノールからブロモフェノールへ、ブロモフェノールからジブロモフェノールへと順に変化して置換反応が進行すると考えられる。置換反応が起こりやすい位置をふまえて、このときに経由すると想定されるブロモフェノールとジブロモフェノールの構造式4つをすべて示せ。

4 次の文章を読み、設問(1)~(7)に答えよ。

タンパク質は、生体を構成する主要な天然高分子化合物の1つである。タンパク質は形状によって (ア)タンパク質と繊維状タンパク質に大別される。繊維状タンパク質は生物の構造維持に重要な役割を果たしており、骨や皮膚などに含まれるコラーゲン、絹糸やクモの糸に含まれる(イ)などがある。

タンパク質は、アミノ酸の(ウ)基と別のアミノ酸の(エ)基とが脱水縮合して生じる(オ)結合であるペプチド結合によって多数のアミノ酸がつながったポリペプチドである。自然界に存在するタンパク質を構成する主要な α -アミノ酸は約 20 種類あり、(カ)をもつ全ての α -アミノ酸には鏡像異性体が存在する。

タンパク質を加水分解するとアミノ酸やペプチドが得られる。分子量 9918 の単一のポリペプチドを 完全に加水分解したところ,表に示す 3 種類の α -アミノ酸 A,B,C が同表に示す割合で得られた。

	分子量	特徴	分子数の割合
α-アミノ酸 A	165	ベンゼン環を含む、ヒドロキシ基を含まない	30 %
α-アミノ酸 B	75	鏡像異性体がない	50 %
α-アミノ酸 C	105	ヒドロキシ基を含む、ベンゼン環を含まない	20 %

表 ポリペプチドの加水分解で得られた α-アミノ酸

ボリペプチド鎖を部分的に加水分解すると α -アミノ酸 A,B,C を 1 つずつ含むトリペプチド D が得られ, トリペプチド D に濃硝酸を加えて加熱すると黄色になり,冷却後アンモニア水を加えると橙黄色を呈した。また, ベンゼン環を含むアミノ酸のカルボキシ基側のペプチド結合を切断する酵素でトリペプチド D を分解したところ α -アミノ酸 B が遊離した。

- (1) 空欄(ア)~(カ)にあてはまる適切な語句を答えよ。
- (2) ポリペプチド鎖に含まれる α -アミノ酸 A, B, C の数を、計算過程を示して求めよ。
- (3) α-アミノ酸 A, B, C の名称を答えよ。
- (4) α -アミノ酸 A, B, Cを1つずつ含むトリペプチドの異性体について、何種類の構造異性体が存在 するかを答えよ。ただし、鏡像異性体は考慮しなくてよい。
- (5) 下線部①の反応の名称と黄色を呈する理由を 20 字以内で答えよ。
- (6) トリペプチド D に水酸化ナトリウム水溶液を加えて塩基性にした溶液に、薄い硫酸銅(Ⅱ)水溶液 を加えて色の変化を観察した。この反応の名称と反応液の色を答えよ。
- (7) 下線部②からトリペプチドDの構造は一通りに決まる。その構造式を示せ。ただし、鏡像異性体は考慮しなくてよい。