Engineering-Research-Activity2015|SHINSHU UNIV.
14/75

OurresearchgrouphasdevelopedtheCompressionShearingMethodatRoomTemperature(COSME-RT)whereinmetalpowderissimultaneouslyloadedbyashearingforceandacompressivestressinairatroomtemperaturetoformaplate.Usually,heatisnecessaryforpowdermetallurgyformingprocessessuchashotpressing.Incontrast,theCOSME-RTprocessesthepowderatroomtemperature,sograincoarseningdoesnotoccur.Asaresult,theCOSME-RTyieldsgoodmechanicalproperties.Ti-6Al-4Viswidelyusedinbiomechanicalapplications,suchasdentalimplantsandintramedullarynails.However,sincevanadium(V)isdetrimentaltoorganismsandisalsoarareearthelement,V-freebiomaterialsaredesired.COSME-RTcanbeusedtoproducepureTiplatesthatexhibithighstrengthandnanometergrainsizes,makingthismaterialausefulalternativetothecommonbiomaterialTi-6Al-4V.Compression Shearing Method at Room Temperature (COSME-RT): (a)Step 1: metal powder is first placed between a stationary plate and a moving plate in the apparatus. A compressive stress is then applied to the moving plate and maintained during the forming process. (b)Step 2: Finally, a shearing load is added to the moving plate and displaced in the shearing direction.A thin plate is fabricated in this step.Development of materials useful in the fields of medicine and welfareThe tensile strength of the Ti thin plate formed by the Compression Shearing Method at Room Temperature (COSME-RT) was found to be 3 times larger than that for the rolled Ti.ThegraduatesofNakayamalaboratoryareworkingactivelyinautomotiveindustriesormanufacturesandmetalprocessingfactories.NoboruNakayamaDr.Eng.AssociateProfessorResearcharea:Plasticworking(powdermetallurgy),Nondestructiveinspection3 timesNakayamaLabIn the FutureMechanical Systems EngineeringAfter GraduationMechanicalstructuresaroundusaredesignedtomeetcertaincriteria.Inrecentyears,thedesigncriteriasuchassafety,reliability,andadaptabilitytonaturalenvironmentareconsideredveryimportant.“Optimaldesign”,“shape/vibrationcontrol”,and“healthmonitoring”areexpectedasnoveltechnologiestoimprovemechanicalstructuresinsafety,reliability,andadaptabilityaswellastheirperformance.Forexample,itisimportanttoimprovethesafety,reliability,andenvironmentaladaptabilityofaircraftsaswellastheperformance.Wehavecarriedoutfundamentalstudiesonthetechnologiestorealizeinnovativeaircraftstructureswhicharesafe,reliable,andkindtonature.Webelievethesetechnologieswillbevaluableinthedesignanddevelopmentoffuturemachinestructures.MasakiKameyamaAssociateProfessorAreaofInterest:OptimaldesignofsmartcompositestructuresKeywords:Aeroelasticity,StructuralMechanics,Optimization,etc.Optimal design of structures considering multiple design criteria by using PC.Structural Design for Safety, Reliability, and AdaptabilityDamage detection of structures based on Lamb wave propagation characteristics.Becausethislaboratoryisbrand-new,thenumberofgraduatesisstillfew.Mostofthemareworkinginthefieldsoftransportationandelectricmachineryindustries.“Independency”and“abroadperspective”arefosteredthroughtheresearchactivitiesinthislaboratory.27.027.528.027.027.528.028.5 Pareto optimal solutionsNormalized fundamental frequencyNormalized compressive buckling loadxyzKameyamaLabIn the FutureMechanical Systems EngineeringAfter Graduation12

元のページ 

10秒後に元のページに移動します

※このページを正しく表示するにはFlashPlayer10.2以上が必要です