A NEW DEVICE TO ESTIMATE VO $_{2}$ DURING CYCLING ON INCLINES BY ACCELEROMETRY AND BAROMETRY

Shigeki Ikegawa, Yuji Takahashi, Yoshi-ichiro Kmaijo, Yoshiyuki Okada, Ken Miyagawa, Mayuko Morikawa, Hirokazu Genno, Shizue Masuki, and Hiroshi Nose

Dpt. of Sports Med. Sci, Shinshu Univ Grad. Sch. of Med., Inst. for Biomed. Sci., Shinshu Univ., and Jukunen Taiikudaigaku Res. Ctr, Matsumoto 390-8621, Japan.

Purpose: Recently, cycling exercise has been highlighted for health promotion for across young to older generations; however, there have been few devices to estimate energy expenditure during cycling in the field including inclines. We have already developed the calorimeter (JD-Mate, Kissei Comtec, Matsumoto) to estimate energy expenditure $\left(\mathrm{VO}_{2}, \mathrm{ml} / \mathrm{kg} / \mathrm{min}\right)$ during walking on inclines from the equation of $\mathrm{VO}_{2}=\mathrm{aVM}+\mathrm{bHu}+\mathrm{cHd}$, where $\mathrm{VM}(\mathrm{G})$ is a vector norm of 3 dimensional accelerations measured with a tri-axial accelerometer, and Hu and $\mathrm{Hd}(\mathrm{m} / \mathrm{min})$ are uphill and downhill speeds, respectively, measured with a barometer. Based on these results, in the present study, we newly determined the values of a, b, and c in order to estimate energy expenditure during cycling on inclines.
Methods: First, we had 5 male and 2 female adults ($28-57 \mathrm{yr}$) perform cycling trials on the level ground at the speeds of $5,10,15,25 \mathrm{~km} / \mathrm{h}$ for 5 min during which period we measured VM with the above calorimeter and VO_{2} with a portable respiratory gas analyzer (Metamax 3B, Cortex, Leipzig) and determined the value of a. Second, we had 8 male and 1 female adults ($25-57 \mathrm{yr}$) performed 2 cycling trials at subjective slow and fast speeds on the incline; 1150m horizontal distance and 62 m altitude distance, by the protocol of 5 -min rest at the highest altitude, downhill cycling to the lowest altitude, 5 -min rest at the lowest altitude, and uphill cycling to the highest altitude in that order, and then, we determined the values of b and c from VM and VO_{2} measured during the trials. Finally, to validate the precision of the equation, we had 5 male and 2 female adults ($28-57 \mathrm{yr}$) perform cycling on the outdoor course composed of level, uphill, and downhill roads; 2,500m horizontal distance and 15 m altitude distance, and the compared VO_{2} estimated from the equation and VO_{2} measured with the respiratory gas analyzer during the trial.
Results: The values that we determined are $\mathrm{a}=0.129 \pm 0.027$ (mean $\pm \mathrm{SE}, \mathrm{ml} / \mathrm{kg} / \mathrm{G}$), $\mathrm{b}=1.534 \pm 0.357$ $(\mathrm{ml} / \mathrm{kg} / \mathrm{min}(\mathrm{m} / \mathrm{min}))$, and $\mathrm{c}=0.311 \pm 0.097(\mathrm{ml} / \mathrm{kg} / \mathrm{min}(\mathrm{m} / \mathrm{min}))$. The eVO_{2} estimated by the equation; $\mathrm{eVO}_{2}=0.129 \mathrm{VM}+1.534 \mathrm{Hu}+0.311 \mathrm{Hd}$, was highly correlated with mVO_{2} measured with the respiratory gas analyzer ($\mathrm{r}=0.923, \mathrm{P}<0.0001$) with a regression equation of $\mathrm{eVO}_{2}=0.994$ mVO_{2} with a mean difference of 0.17 ± 4.36 (mean $\pm \mathrm{SD}$) over the range of $0.0-25.9 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$
VO_{2} by Bland-Altman analysis.
Conclusions: We have successfully determined the equation to estimate VO_{2} precisely during cycling exercise on outdoor roads including inclines using the calorimeter.

Key words: cycling exercise, inclines, outdoor, calorimeter, VO_{2} estimation

