

評価条件

1. 酸の純度等: メーカー(関東化学), 酸の純度(UGR(61%), 前電解にて高純度化処理後、10倍希釈) 2. 水の純度等: メーカーまたは製造機等(Milli-Pore Japan, MILLI-Q GRADIENT A10 & ELIX 10 UV)

3. 洗ビンの容器の材質: (未使用

4. 電解槽および電気化学測定装置名等: (電解槽:マルチチャンネルフローニ重電極(CFDE) /

電気化学測定装置:HA1010mM8 北斗電工

5. 電解槽の容積: セル(1.9 mL)、電解液タンク(1000 mL)

6. 電解槽の洗浄方法: (クロム混酸浸漬後、milli-pore水にて洗浄)

7. チャンネルフロ-電極サイズ:

(Au試験極 1mm×4mm(0.04cm²)、 Pt検出極 1mm×4mm(0.04cm²))
 8. 試験電極作製法: GC電極上に触媒を載せた上にイオノマーを滴下

9. 試験電極部: Pt/C担持量(11.0 µg cm⁻²), イオノマー担持量(Nafion 0.2wt%, 12.5 µL cm⁻²)

10. Au電極上への触媒担持方法(一回で担持、数度に分けて担持、その他の工夫などを簡潔に記述願います):

(空気プラズマにより表面を親水化処理後、規定量の触媒インクを滴下)
 11. 試験電極作製時の加熱温度と時間: 130 ℃, 30 min
 12. ORR特性評価における電解液中での電極の前処理:

(挿引速度:0.5V/sで50mV~1000mV間を定常状態になるまでサイクル(およそ80サイクル)
 13. ORR評価測定前酸素吹込時間: 60 min 以上
 14.ORR評価中の酸素吹込状況: 電解液中に吹き込み
 15. 特記事項: ORR活性値は下記の2通りで算出。

① I^{-1} vs $U_{m}^{-1/3}$ プロット (I: ORR電流, U_{m} : 電解液流速) [Koutecky-Levichプロット]より ② $1/I = 1/I_{LCC} + 1/I_{L}$ (I: ORR電流, I_{LCC} : 活性支配電流(限界電流補正), I_{L} : 限界電流)より

$$I_{\rm LCC} = \frac{I_{\rm L} \times I}{I_{\rm L} - I}$$

FC-T1

F

次式より各流速ごとの活性支配電流値を 求め、**平均値と標準偏差値**を算出。 FC-I1

 $I_{\rm LCC} = \frac{I_{\rm L} \times I}{I_{\rm L} - I}$

I: ORR電流, *I*_{LCC}: 活性支配電流(限界電流補正), *I*_L: 限界電流

	流速 <i>U</i> m	$J_{ m LCC}$	Mass Act		
	(cm/s)	(mA/cm^2)	(A/g)		
	10	0.93	637		
	15	0.89	613		
0.0017	23	0.89	614		
0.80 V	30	0.88	601		
	50	0.88	603		
	平均值	0.89	614		
	標準偏差	0.02	13.0		
	10	0.27	186		
	15	0.27	183		
	23	0.27	185		
0.85V	30	0.28	190		
	50	0.28	192		
	平均值	0.27	187		
	標準偏差	0.005	3.3		
			-		
	10	0.057	39.3		
	15	0.057	39.1		
	23	0.059	40.1		
0.90V	30	0.064	44.0		
	50	0.066	45.5		

0.061

0.003

41.6

2.4

平均值

標準偏差

次式より各流速ごとの活性支配電流値を 求め、**平均値と標準偏差値**を算出。

 $I_{\rm LCC} = \frac{I_{\rm L} \times I}{I_{\rm L} - I}$

I: ORR電流, *I*_{LCC}: 活性支配電流(限界電流補正), *I*_L: 限界電流

	流速 <i>U</i> m	$J_{\rm LCC}$.	Mass Act
	herefore here \$\$ he	(A/g)	
	10	0.54	403
0.80V $(113) = (113) + (13$	15	0.53	396
	405		
	0.55	406	
	50	0.54	399
	平均值	0.54	402
	標準偏差	0.005	3.8
	10	0.20	145
	1.7	0.10	140

	10	0.20	145	
	15	0.19	140	
	23	0.19	141	
0.85V	30	0.19	141	
	50	0.19	141	
	平均值	0.19	142	
	標準偏差	0.002	1.7	

	10	0.038	28.5
	15	0.038	28.4
	23	0.039	29.0
0.90V	30	0.040	29.6
	50	0.041	30.5
	平均值	0.039	29.2
	標準偏差	0.001	0.6

次式より各流速ごとの活性支配電流値を 求め、**平均値と標準偏差値**を算出。 FC-T1

$$I_{\rm LCC} = \frac{I_{\rm L} \times I}{I_{\rm L} - I}$$

I: ORR電流, *I*_{LCC}: 活性支配電流(限界電流補正), *I*_L: 限界電流

	流速 U _m	J _{LCC}	Mass Act		
	(cm/s)	(mA/cm^2)	(A/g)		
	10	0.59	206		
	15	0.66	230		
0.001/	23	0.73	254		
0.80 V	30	0.74	259		
	50	0.80	280		
	平均值	0.71	246		
	標準偏差	0.07	25.3		
	10	0.21	73.2		
0.85V	15	0.23	80.1		
	23	0.25	88.4		
	30	0.26	91.4		
	50	0.29	103		
	平均值	0.25	87.2		
	標準偏差	0.03	10.0		
	10	0.051	17.7		
	15	0.056	19.4		
	23	0.062	21.5		
0.90V	30	0.064	22.4		
	50	0.077	26.8		

0.062

0.008

平均值

標準偏差

21.5

2.83

次式より各流速ごとの活性支配電流値を 求め、**平均値と標準偏差値**を算出。

$$I_{\rm LCC} = \frac{I_{\rm L} \times I}{I_{\rm L} - I}$$

I: ORR電流, *I*_{LCC}: 活性支配電流(限界電流補正), *I*_L: 限界電流

	流速 U _m	J _{LCC}	Mass Act	
		(A/g)		
0.80V	10	0.76	518	
	15	0.80	541	
	23	0.80	540	
	30	0.81	545	
	50	0.86	580	
	平均值	0.81	545	
	標準偏差	0.03	20.2	
	10	0.25	168	
	15	0.26	175	
	23	0.27	180	

	15	0.26	175
	23	0.27	180
0.85V	30	0.27	186
	50	0.29	197
	平均值	0.27	181
	標準偏差	0.01	9.9

	10	0.052	35.3	
	15	0.059	40.1	
	23	0.062	42.3	
0.90V	30	0.066	44.4	
	50	0.070	47.4	
	平均值	0.062	41.9	
	標準偏差	0.005	3.7	

<u>まとめ</u>

比活性 (mA cm⁻²)

	E vs. RHE	FC-I1	FC-I2	FC-T1	FC-J1
j^{-1} vs. $U_{\rm m}^{-1/3}$ プロット (Koutecky-Levichプロット)	0.80	0.81	0.55	1.69	0.99
	0.85	0.29	0.18	0.66	0.38
$I_{\rm L} \times I$	0.80	0.89	0.54	0.71	0.81
$I_{\rm LCC} = \frac{I_{\rm LCC}}{I_{\rm I} - I}$	0.85	0.27	0.19	0.25	0.27
(限界電流補正)	0.90	0.061	0.039	0.062	0.062

質量活性 (A g_{Pt}⁻¹)

	E vs. RHE	FC-I1	FC-I2	FC-T1	FC-J1
j ⁻¹ vs. Um ^{-1/3} プロット (Koutecky-Levichプロット)	0.80	554	410	590	669
	0.85	202	136	232	255
$I_{\rm L} \times I$	0.80	614	402	246	545
$I_{\rm LCC} \equiv \frac{I_{\rm LCC}}{I_{\rm I} - I}$	0.85	187	142	87.2	181
(限界電流補正)	0.90	41.6	29.2	21.5	41.9

評価条件

1. 酸の純度等: メーカー(関東化学),酸の純度(UGR(61%),前電解にて高純度化処理後、10倍希釈) 2. 水の純度等: メーカーまたは製造機等(Milli-Pore Japan, MILLI-Q GRADIENT A10 & ELIX 10 UV),

純度:(不純物3 ppb)

4. 電解槽および電気化学測定装置名等: (電解槽:RRDE標準セル(パイレックス製)/

電気化学測定装置:HA1010mM8 北斗電工)

5. 電解槽の容積: 100 mL

6. 電解槽の洗浄方法: (クロム混酸浸漬後、milli-pore水にて洗浄)

7. 回転電極の電極部の大きさ: 直径(6 mm)

8. 試験電極作製法: b. GC電極上に触媒を載せた上にイオノマーを滴下

9. 回転電極の試験電極部: Pt/C担持量(11.0 µg cm⁻²), イオノマー担持量(0.05wt%, 25 µL cm⁻²)

10. GC電極上への触媒担持方法(一回で担持、数度に分けて担持、その他の工夫などを簡潔に記述願います):

(一回で担持)

11. 試験電極作製時の加熱温度と時間: 加熱なし

12. ORR特性評価における電解液中での電極の前処理:

(挿引速度:0.5V/sで50mV~1000mV間を定常状態になるまでサイクル(およそ80サイクル
 13. ORR評価測定前酸素吹込時間: 60 min
 14.ORR評価中の酸素吹込状況: 電解液中に吹き込み
 15. 特記事項:なし

耐久性評価プロトコル

FCCJの起動停止模擬試験法に準拠して 電位ステップによる加速劣化 (N₂飽和電解液)

<u> 起動停止プロトコル(2007年FCCJ提案)</u>

N₂, 0.1M HClO₄(25°C)

回転リングディスク電極(RRDE)法による酸 素還元(ORR)活性の評価 (O₂飽和電解液)

電気化学活性比表面積(ECSA)の変化

FC-T2

質量活性(MA)の変化

