脊髄相反性抑制に着目した力みのメカニズムの解明

	新潟医療福祉大学	平	林		怜
(共同研究者)	同	江	玉	睦	明
	百	大	西	秀	明

Elucidation of Strain Mechanism Focusing on Spinal Reciprocal Inhibition

by

Ryo Hirabayashi, Mutsuaki Edama, Hideaki Onishi Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare

ABSTRACT

Excessive co-contraction interferes with smooth joint movement via mechanisms including failed spinal reciprocal inhibition against antagonists. However, the function of spinal reciprocal inhibition during co-contraction remains unclear. To investigate the influence of changes in contraction intensity during co-contraction on spinal reciprocal inhibition, 20 healthy adults were subjected to four stimulation conditions: a conditioning stimulus–test stimulation interval (CTI) of -2, 2, or 20 ms or a test stimulus without a conditioning stimulus (single). Co-contraction (change in soleus muscle [Sol] vs. tibialis anterior [TA] activity) was examined at task A 0% vs. 0% maximal voluntary contraction (MVC), task B 5% vs. 5% MVC, task C 15% vs. 15% MVC, task D 5% vs. 15% MVC, and task E 15% vs. 5% MVC.

At CTI of 2 ms, the H-reflex amplitude value was significantly lower in tasks A, B, デサントスポーツ科学 Vol. 41

C, and D than in the single condition. Among the tasks, the H-reflex amplitude values were lower for A, B, C, and D than for E. At CTI of 20 ms, the H-reflex amplitude was significantly lower in tasks A, B, C, D, and E. Among the tasks, the H-reflex amplitude was significantly lower from task A and B to task E. For co-contraction <15% MVC, reciprocal Ia inhibition may be modulated depending on the Sol vs. TA muscle activity ratio. D1 inhibition was equivalent when the Sol/TA ratio was equal or TA muscle activity was high. During co-contraction with high Sol muscle activity, D1 inhibition decreased from rest but D1 inhibition remained.

要 旨

本研究の目的は、ヒラメ筋(Sol)と前脛骨筋 (TA)のco-contraction中の筋活動量の割合変化を 調べ、脊髄相反性抑制(RI)のメカニズムの一端 を明らかにすることとした。

対象は健常成人20名とした. RIの計測は, 条 件-試験刺激間隔 (CTI) を-2ms, 2ms (Ia相反抑 制), 20ms (D1抑制) と条件刺激をしない試験刺 激のみ (single) を加えた4条件を刺激条件とした. また,刺激回数は刺激条件をランダムに合計60回 (4条件×15回)刺激した. Co-contraction課題 (Sol vs TA) は, Task A (0%MVC vs 0%MVC), Task B (5%MVC vs 5%MVC), Task C (15%MVC vs 15%MVC), Task D (5%MVC vs 15%MVC), Task E (15%MVC vs 5%MVC) の5課題とした.

CTI が 2ms で は, Task A, B, C, D で single と 比較してH反射振幅値が有意に減少した. cocontraction 課題間の比較は, Task A, B, C, D が Task E よりH反射振幅値が有意に減少した. CTI が 20ms では, Task A, B, C, D, E で single と 比較してH反射振幅値が有意に減少した. Cocontraction 課題間の比較は, Task A, B が Task E よりH反射振幅値が有意に減少した.

15%MVC以下でのco-contractionにおいて, Ia 相反抑制とD1抑制はヒラメ筋と前脛骨筋の筋活 動比 (Sol / TA ratio) に依存して変調する可能性 が示唆された.

緒言

co-contraction および co-activation は, 主動作筋 と拮抗筋を同時活性させる収縮様式であり力みに よって引き起こされる¹⁾. Co-contraction は随意 性に, co-activation は不随性に働くと定義されて いる. これらの収縮戦略は, 関節の安定性向上に 重要な運動制御機構として考えられている.

痙性疾患,小脳性失調症,パーキンソン病,脊 髄損傷などの上位運動ニューロン障害では,主動 作筋のみの運動が要求される時,拮抗筋に対する 脊髄相反性抑制(RI)機構の破綻が,拮抗筋に対 して抑制が働かず,過剰な同時活性を引き起こす. そのため,目的とする円滑な関節運動が障害され ることがある²⁾.過剰な同時活性は,必ずしも病 的な状態のみでみられる現象でなく,加齢に伴い 同時活性が増加する³⁾.スポーツ競技においても, 過剰な同時活性は関節運動を妨げ,俊敏性が求め られる時の運動パフォーマンスを低下させる⁴⁾.

過剰な同時活性のメカニズムは,筋紡錘からの 求心性線維である Ia線維終末部でのシナプス前抑 制の低下⁵⁾ や post-activation depression (活動後に おけるシナプス伝達効率減少)の低下⁶⁾ による伸 張反射の亢進がある.また,関節運動時では,主 動作筋 Ia線維からの Ia 相反抑制の低下^{7,8)},シナ プス前抑制 (D1抑制)の低下^{7,9)},拮抗筋促通性

入力の出現¹⁰⁾ がある.このように,過剰な同時 活性を引き起こす多くの要因が報告されている.

先行研究で, co-contraction 中は主動作筋か ら拮抗筋に対する抑制性介在ニューロンを抑制 し、円滑な関節運動を阻害させると報告してい る⁸⁾. Co-contractionとRIとの研究で最も引用さ れている報告は、Nielsenらの先行研究で、cocontraction中は収縮強度に依存せずRIが働かな かったと報告している⁸⁾.しかし、この先行研究 は⁸⁾, co-contraction 中の収縮強度の指標として 関節トルクを用いている.他の先行研究におい ても同様に、足関節底背屈中のRIを計測する際、 収縮強度は関節トルクを指標としている^{8,11,12)}. 関節トルクを指標とした co-contraction では,足 関節底背屈に複数筋が関与していることから、前 脛骨筋 (TA) とヒラメ筋 (Sol) の筋活動量が同程 度でなかった可能性がある.また,H反射振幅値 やRIの抑制量は、各筋の筋活動量によって変化 することが報告されている^{11,12)}.このことから, 筋活動量にも着目して、各筋の筋出力時にリク ルートされる運動単位の割合を考慮し, RIを計 測する必要がある.

Co-contraction中のRI機構を解明するためには 3つの検討項目が挙げられる. i)先行研究⁸⁾で は,条件-試験刺激間隔(CTI)が10ms以内の計 測に留まり,RI機構の短潜時抑制であるIa相反 抑制しか検討できていない.RIの検討には,長 潜時抑制のシナプス前抑制であるD1抑制の検討 も必要である. ii)Co-contraction強度として, これまでの先行研究では関節トルクを指標として いるため,筋活動を併用した検討が必要である. iii)RIは,TAとSolの筋活動量を同程度にした co-contractionとTAとSolの筋活動量の割合を変 化させた co-contractionで検討することで,RIが 筋活動もしくは関節トルクに依存して抑制度合い に変化があるか明確にする必要がある.

そこで、本研究の目的は、SolとTAのco-デサントスポーツ科学 Vol. 41 contraction中の筋活動量の割合変化を調べ, RIの メカニズムの一端を明らかにすることとした.

本研究の仮説は、低強度のco-contraction中や TAの筋活動の割合が高いco-contraction中はRIの 機能であるIa相反抑制とD1抑制が働くと仮定する.

1. 方法

1.1 対象

対象は健常成人20名(男性10名,女性10名) を対象とした(年齢20.0±0.7歳,身長167.2± 8.2cm,体重56.8±7.9kg).本研究は、ヘルシン キ宣言に基づいたものであり、本学の倫理委員会 の承認を得て実施した.被験者には実験内容及び 被験者の権利についての説明を十分に行い、実験 参加への同意を得たうえで実験を実施した.

1. 2 測定肢位

対象は右側下肢で行い,測定肢位は股関節100°, 膝関節120°,足関節110°とした.足関節は実験 を通して測定肢位が変化しないようにフットプ レート(竹井機器工業株式会社)により固定を 行った(図1).また,口頭指示としては足関節を 動かさず,TAとSolに力を入れるよう促した.被 験者には十分に練習を行わせた後,実験を行った.

1.3 筋電図記録

表面筋電図 (EMG) は Ag / AgCl 電極を用い て (Blue Sensor, METS), 電極間距離 20mm で Sol 内側頭の筋腹, TA の筋腹に貼付した. アー ス電極は EMG 電極と電気刺激電極の間に貼付 した. EMG 信号 は増幅器 (FA-DL-720・140, 4 ASSIST) で 100 倍に増幅 したのち A/D 変換 (PowerLab 8/30, AD Instruments) し, サンプリ ング周波数 10kHz でパーソナルコンピュータに記 録した. バンドパスフィルターは 10Hz から 1kHz とした. データは LabChart 7 (AD Instruments) を 使用して解析した.

-177 -

図1 実験風景 実験肢位は右股関節 100°, 膝関節 120°, 足関節 110°に設定した. 条件刺激は TA の支配神経である深腓骨神経に刺激した. 試験刺激は Sol の支配神経である脛骨神経に刺激した. アース電極は EMG 電極と電気刺激電極の間に貼付した

1. 4 関節トルク

関節トルクの測定には、足関節固定に使用して いるフットプレート軸に装着された関節トルク センサー(竹井機器工業株式会社)にて測定した. 関節トルクはサンプリング周波数500Hz, lowpass-filterを190Hz (T-K-K-1268b,竹井機器工業 株式会)で、PowerLab 8/30 (AD Instruments)を使 用しA/D変換した後に、オフライン上のパーソナ ルコンピュータに取り込んだ.データはLabChart 7 (AD Instruments)を使用して解析した.

1.5 電気刺激

電気刺激は、電気刺激装置(SEN-8203,日本光 電)を用い、アイソレーター(SS-104J,日本光電) を介して、電気刺激(持続時間1ms,矩形波)を 実施した.Sol-H反射,M波の誘発には、選択的 にSolを刺激するために、単極刺激法を用い、陽 極を膝蓋骨上面、陰極を膝窩部にて試験刺激を実 施した.TAのM波の誘発には、深腓骨神経を刺 激するために、双極刺激法を用い、腓骨頭下で深 腓骨神経の走行に沿って条件刺激を実施した^{7,8)}.

1. 6 RIの計測

RIの計測には,先行研究^{8,13)}で用いられてい る手法を参考にし,**TA**の支配神経(深腓骨神経) に条件刺激した後,試験刺激としてSol-H反射 振幅値の変化を記録した.刺激条件は,CTIを -2ms,2ms,20ms,条件刺激をしない試験刺激のみ (single)を加えた4条件とした.CTI -2msは条件 刺激の影響,2msは最もIa相反抑制量が多い⁸⁾, 20msは最もD1抑制量が多い¹⁴⁾刺激条件に設定 した.刺激回数は4条件をランダムに刺激し,4 条件×5回×3セット実施し,合計60回刺激した. 刺激頻度は0.3Hzとした.セット間は1分間の休 息を入れた.条件刺激の刺激強度は,TAのM波 閾値とした¹¹⁾.試験刺激の刺激強度は,H反射 の試験サイズに依存してIa相反抑制量が変化する ため¹⁵⁾,Sol-M波最大振幅値(Mmax)の15-25% になるように設定した.

1. 7 Co-contraction課題

TAとSolの最大随意収縮(MVC)を計測し, co-contraction課題はSolvsTA,A:0%MVCvs 0%MVC,B:5%MVCvs5%MVC,C:15%MVC vs15%MVC,D:5%MVCvs15%MVC,E: 15%MVCvs5%MVCの5課題とした.TaskA後 の4課題はランダムで行い,課題間で3分以上 の休息を入れた.モニターは,被験者の前に置 き,筋活動量をフィードバックできるように設定 した.フィードバックのためのEMG波形は,生

波形を全波整流に処理した後に、501pointのス ムージング波形とした.co-contraction中は、足 関節角度が変わらないようにFoot plateにて固定 した.被験者には、筋活動量が一定となるよう に十分に練習を行わせた.各co-contraction中の background EMGと足関節トルクは各試験刺激前 の30-50msを解析し平均した(表1).

表1 筋活動レベル

	Sol	TA	Sol / TA ratio		
Task B	4.53 ± 0.17	4.95 ± 0.21	0.95 ± 0.05		
Task C	15.30 ± 0.38	15.13 ± 0.52	1.03 ± 0.03		
Task D	4.75 ± 0.21	16.03 ± 0.49	0.30 ± 0.02		
Task E	15.40 ± 0.45	5.11 ± 0.38	3.27 ± 0.23		
$(\% \text{ MVC}) (\text{Mean} \pm \text{standard error})$					

1.8 実験手順

実験手順は図2に示す.MVCはSolとTAで計 測を行い,SolとTAの5%MVC,15%MVCを算 出した.電気刺激は試験刺激強度と条件刺激強度 を設定した.刺激条件は4条件(single,-2ms,2ms, 20ms)をランダムに5回ずつ刺激した.刺激頻度 は0.3Hzで実施した.この刺激条件を3セット実 施し、刺激条件間は1分間の休息を入れた.刺激 条件は各 co-contraction課題中に実施した.各 cocontraction課題間では3分以上の休息を入れた.

1. 9 統計処理

データ解析として,Sol-H反射振幅値とM波振 幅値は、各波形の振幅のpeak-to-peak値で算出し た. 各 co-contraction 課題の RI の 解析は, Sol-H 反射振幅値を最大 M 波振幅値で除して % 表記

Amplitude of the Sol Mmax] $\times 100$). 統計処理として, 各 co-contraction 課題の single の比較, 各 co-contraction 課題の single 条件と他 の3条件との比較には、co-contraction課題と刺激 条件の2要因とした反復測定二元配置分散分析を 行い,事後検定として,各co-contraction課題の singleの比較はTurkey法を用いた多重比較検定を 行い、各co-contraction課題のsingle条件と他の3 条件との比較は、対応のあるt検定にBonferroni 補正を行った.刺激条件3条件(singleを除く)に おける co-contraction 課題間の Ia 相反抑制と D1 抑 制の抑制量を比較する際は、条件刺激を与えた H反射振幅値にsingleのH反射振幅値で除して% 表記にて算出した ([Amplitude of the conditioned H-reflex / Amplitude of the test H-reflex]×100). 統 計処理として,各刺激条件における co-contraction 課題間の比較は, co-contraction 課題と刺激条件 の2要因とした反復測定二元配置分散分析を行い、 事後検定としてTurkey法を用いた多重比較検定 を行った.いずれも有意水準は5%とした.

にて算出した ([Amplitude of the Sol H-reflex /

2. 結果

2.1 刺激条件間でのH反射振幅値

Co-contraction 課題と刺激条件の2要因とした 反復測定二元配置分散分析の結果,刺激条件は主

図2 実験デザイン

Co-contraction 課題(Sol vs TA) は Task A(0% MVC vs 0% MVC), Task B(5%MVCvs5%MVC), Task C(15%MVCvs15%MVC), Task D (5%MVC vs 15% MVC), Task E(15% MVC vs 5% MVC) である.

-180 -

効果を認め[F (3, 57) =74.237, p<0.001, partial η^2 =0.796], co-contraction 課題は主効果を認めず [F (4, 76) =1.286, p=0.283, partial η^2 =0.063], cocontraction 課題と刺激条件間には交互作用を認め た[F (12, 228) =6.800, p<0.001, partial η^2 =0.264]. co-contraction 課題の5課題で得られた single の ヒラメ筋H反射振幅値をもとに,事後検定とし てTurkey法を用いた多重比較検定の結果, cocontraction 課題間では有意差を認めなかった (表 2). したがって,条件刺激に対するヒラメ筋H 反射振幅値の変化は,試験刺激強度に依存したも のではないことが確認された.

2.2 刺激条件間の比較

刺激条件 single と他の3条件との比較には,対応のあるt 検定に Bonferroni 補正を行った (図3).

singleと比較してTask A, B, C, Dは2ms (p<0.001), 20ms (p<0.001) でH反射振幅値が有意に減少し た. Task Eは, 20ms (p<0.001)のみでH反射振幅 値が有意に減少した.

2.3 Co-contraction課題間のH反射振幅値(図4)

刺激条件における co-contraction 課題間の比較 には、反復測定二元配置分散分析の結果、刺激 条件で主効果を認め [F (2, 38) =71.388, p<0.001, partial η^2 =0.790], co-contraction 課題で主効果を 認め [F (4, 76) =7.548, p<0.001, partial η^2 =0.284], co-contraction課題と刺激条件間では交互作用を認 めた [F (8, 152) =7.135, p<0.001, partial η^2 =0.273]. 事後検定として、多重比較検定の結果、CTI -2ms では co-contraction 課題間で有意差を認めなかっ た. CTI 2msで、Task A (p<0.001), B (p<0.001), C

表2 各co-contraction課題のsingle条件のH反射振幅値

	Task A	Task B	Task C	Task D	Task E	
試験 H 反射振幅值(% of Mmax)	19.6 ± 2.6	21.1 ± 2.3	20.0 ± 3.0	19.8 ± 2.4	19.4 ± 2.8	
$(Mean \pm standard error)$						Ì

-181 -

図4 co-contraction課題间の比較 図の縦軸は条件刺激をした H反射振幅値に試験刺激のみの H反射振幅値を除した値である。横軸は各 co-contraction課題で示した. *p < 0.05, †p < 0.01, ‡p < 0.001.

表3 足関節トルク

Task A	Task B	Task C	Task D	Task E
0.01 ± 0.06	0.10 ± 0.46	3.24±3.82*, †	$-2.68 \pm 2.14^*, \dagger, \ddagger$	5.28±2.70*,†.§
(Nm) (Mean ± standard e	error)(+:底屈, -:背屈), p < 0.0	5. *:vs Task A. †:vs Task B	1. ‡ :vs Task C. § :vs Task D	

(p=0.007), D (p<0.001) はTask Eと比較してH反 射振幅値が有意に減少した. CTI 20msで, Task A (p<0.001), B (p=0.032) はTask Eと比較してH反 射振幅値が有意に減少した.

2. 4 足関節トルク(表3)

足関節トルクの比較には、反復測定一元配置 分散分析の結果、課題間に主効果を認めた[F(4, 76)=42.857, p<0.001, partial η²=0.693]. 事後検定 としてTurkey法を用いた多重比較検定の結果、 Task Aと比較してTask Cは足関節底屈トルクが 有意に増加 (p<0.001), Task Dは足関節背屈トル クが有意に増加 (p=0.004), Task Eは足関節底屈 トルクが有意に増加 (p<0.001)した. Task Bと比 デサントスポーツ科学 Vol. 41 較してTask Cは足関節底屈トルクが有意に増加 (p<0.001), Task Dは足関節背屈トルクが有意に 増加 (p=0.003), Task Eは足関節底屈トルクが有 意に増加 (p<0.001) した. Task Cと比較してTask Dは足関節背屈トルクが有意に増加 (p<0.001) し た. Task Dと比較してTask Eは足関節底屈トル クが有意に増加 (p<0.001) した.

3. 考察

本研究のmain findingsとして, TAからSolに 対するIa相反抑制はSolとTAの筋活動比(Sol/ TA ratio)が同程度またはTAの筋活動が高い cocontraction 中に抑制を認め, Solの筋活動が高い co-contraction 中には抑制を認めなかった. TA か -182-

らSolに対するD1抑制は,Sol/TA ratioが同程度 またはTAの筋活動が高いco-contraction中に抑制 を認め,Solの筋活動が高いco-contraction中には 抑制量の減少を認めたが,抑制が消失するまで至 らずに残存することが明らかとなった。

本研究の結果より、Task A は、先行研究^{7,8)} と同様の結果となり、CTI が2ms、20ms で Sol H 反射振幅値が single と比較して有意に減少した. CTI 2ms における抑制の存在は、動物実験の結果 と一致¹⁶⁾ しており、2シナプス性 Ia 相反抑制と 考えられている¹⁷⁾. そのため、本研究でも CTI 2ms で抑制量が多かったことから、これまでの先 行研究⁸⁾ と同様に2シナプス性 Ia 相反抑制により Solの a 運動ニューロンの興奮性が減弱したと考 える. CTI 20ms における抑制の存在は、D1 抑制 と呼ばれ⁷⁾、求心性 Ia 線維の終末にシナプス前抑 制によって、Sol の a 運動ニューロンの興奮性を 抑制したと考える^{9,11,14)}.

CTI 2msのIa相反抑制の結果について、Task A、 B, C, Dにおいて刺激条件 single と比較してH反 射振幅値が有意に減少した. Task B, CでH反射 振幅値が減少したことから,筋活動量を同程度 にした15%MVC以下でのco-contraction 中は, Ia 相反抑制が働くことが明らかとなった. 先行研 究⁸⁾においてIa相反抑制は関節トルクに依存し て変調していると考えられていたが、本研究の結 果より、Task Cでの筋活動量を同程度にしたcocontractionは、足関節底屈トルクが3.24Nm働い ていた. つまり, 足関節底屈トルクが発揮されて いる co-contraction 中でも Ia 相反抑制が働いてい たことから、関節トルクに依存するのではなく、 Ia 相反抑制はSol / TA ratio に依存している可能性 が示唆された. Task DはTAの筋活動量が高く. 足関節背屈トルクが2.68Nmであった。先行研究 では、足関節背屈中は収縮強度に関係なく抑制量 も変化せずIa相反抑制が働いたと報告している ⁸⁾.本研究結果もTask Dでは,Task Aと同等の抑 制量でIa相反抑制が働いたことが明らかとなった. Sol / TA ratioが同程度またはTAの筋活動が 大きければ (Task B, C, D), co-contraction中でも Ia相反抑制は働く可能性が示唆された.

Task Eは single と比較してH反射振幅値に有意 差を認めなかった.また、課題間の比較でTask E はTask A, B, C, DよりH反射振幅値が有意に増加 し、Ia相反抑制が認められなかった.先行研究で 足関節底屈トルクが4Nm以上でIa相反抑制が減 少し、8Nm以上では抑制を認めなかったと報告 されている⁸⁾. このことから, Task Eの足関節底 屈トルクは5.28Nmであり先行研究と同様の結果 となった. Solの収縮時のIa相反抑制を抑制する メカニズムとしては,相反抑制機構がないゴルジ 腱器官からのIb抑制と反回抑制(Renshaw細胞) が、拮抗筋への抑制性介在ニューロンを興奮さ せる¹⁸⁾. Renshaw細胞を介した反回抑制は、拮 抗筋からの抑制性介在ニューロンを抑制し^{19,20)}. 相反性抑制を抑制することを報告している²¹⁾. このことから, co-contraction 中の Sol / TA ratio で Solの筋活動が大きかったことにより、Ia相反抑 制が消失したことが考えられる.

CTI 20msのD1抑制の結果は、筋活動量を変 化させたすべてのTaskでD1抑制を認めたことか ら、拮抗筋同士の収縮強度の割合が変調しても D1抑制は働くことが明らかとなった.D1抑制は RI機能のうちの長潜時抑制である.D1抑制の機 序は、II群線維の求心性入力による多シナプス性 抑制の可能性も報告されたが¹⁴⁾,D1抑制を誘発 する条件刺激は大脳磁気刺激による運動誘発電位 を抑制しないことからIa終末におけるシナプス 前抑制と考えられている²²⁾.先行研究では、cocontraction中の収縮強度変化とD1抑制との影響 について報告はないが、足関節背屈中はD1抑制 が働き、Ia相反抑制と同様に収縮強度と関係なく 安静時と同等のD1抑制量であることや、底屈時 でも背屈時と同様に働くことが報告されている

^{11,14)}. 収縮強度変化に着目すると、底屈トルク が増加するにつれて、D1抑制量は減少している が統計上の有意差を認めなかったと報告している 11).本研究の結果では,収縮強度間での比較から, Task EはTask A, BよりD1抑制量が有意に減少し ていることから, Sol / TA ratio でSolの筋活動の 割合が高い co-contraction 中は, TA から Sol に対 するD1抑制量が減少することが明らかとなった. しかし、D1抑制はIa相反抑制と違い、Task Eで D1抑制量が減少するが消失しなかった.先行研 究^{11,14)}で、足関節底屈の等尺性収縮中は、底屈 トルクを増大させても、D1抑制量は減少傾向で あったが残存して働いていた.この要因として, Ia相反抑制とD1抑制は抑制経路が異なることが 考えられる. Ia相反抑制は抑制性介在ニューロン を介して直接 Sol の脊髄前角細胞を抑制させ、抑 制時間は数ms働く^{7,8)}.また,抑制性の受容体 はグリシン作動性シナプスが多く存在する^{23,24)}. 一方で、D1抑制は、Ia終末におけるシナプス前 抑制によってSolの前角細胞の興奮を抑制させ, 抑制時間は数十ms働く^{7,11,14)}.また、抑制性の 受容体はGABA作動性シナプスが多く存在する ²⁵⁾. このシナプスの特性として、GABA作動性 シナプスは、グリシン作動性シナプスよりも、充 填効率が高く²¹⁾,抑制時間が長い²⁶⁾ことが報告 されている. そのため, D1抑制は抑制時間が長く, 抑制が働く場所もSolのIa求心性線維終末であり, 抑制部位や抑制性の受容体に相違があることで、 抑制機能の働きに違いがあった可能性が考えられ る.

4. 結 論

本研究は、SolとTAのco-contraction中の収縮 強度を筋活動に着目してRIの影響を明らかにし た.15%MVC以下で筋活動量を同程度にしたcocontraction中では、Ia相反抑制とD1抑制が働く ことが明らかとなった、SolとTAの収縮強度の デサントスポーツ科学 Vol.41 割合を変化させることで, Sol / TA ratio が Ia 相反 抑制の働きに関与している可能性が示唆された. D1 抑制は Sol / TA ratio に依存するも, Sol の筋活 動が高い co-contraction 中は抑制量が減少したが, 抑制機能は残存していた.

謝 辞

本研究を遂行するにあたり,研究助成を賜りま した公益財団法人石本記念デサントスポーツ科学 振興財団に厚く御礼申し上げます.

文 献

- Aagaard P., Simonsen E.B., Andersen J.L., Magnusson S.P., Bojsen-Moller F., Dyhre-Poulsen P., Antagonist muscle coactivation during isokinetic knee extension, *Scandinavian journal of medicine & science in sports*, **10** (2) :58-67 (2000)
- 2) Hayashi A., Kagamihara Y., Nakajima Y., Narabayashi H., Okuma Y., Tanaka R., Disorder in reciprocal innervation upon initiation of voluntary movement in patients with Parkinson's disease, *Experimental brain research*, **70** (2) :437-440(1988)
- Morita H., Shindo M., Ikeda S., Yanagisawa N., Decrease in presynaptic inhibition on heteronymous monosynaptic Ia terminals in patients with Parkinson's disease, *Movement disorders : official journal of the Movement Disorder Society*, **15** (5) :830-834 (2000)
- Blackwell J.R., Cole K.J., Wrist kinematics differ in expert and novice tennis players performing the backhand stroke: implications for tennis elbow, *Journal of biomechanics*, 27 (5) :509-516 (1994)
- 5) Kagamihara Y., Masakado Y., Excitability of spinal inhibitory circuits in patients with spasticity, *Journal* of clinical neurophysiology : official publication of the American Electroencephalographic Society, 22 (2) :136-147 (2005)
- 6) Nielsen J., Petersen N., Crone C., Changes in transmission across synapses of Ia afferents in spastic patients, *Brain : a journal of neurology*, 118 (Pt 4) :995-1004(1995)
- Mizuno Y., Tanaka R., Yanagisawa N., Reciprocal group I inhibition on triceps surae motoneurons in man, *Journal of neurophysiology*, 34 (6) :1010-1017

-184 -

(1971)

- Nielsen J., Kagamihara Y., The regulation of disynaptic reciprocal Ia inhibition during co-contraction of antagonistic muscles in man, *The Journal of physiology*, 456:373-391 (1992)
- Tanaka R., Reciprocal Ia inhibition during voluntary movements in man, *Experimental brain research*, 21 (5) :529-540(1974)
- Crone C., Johnsen L.L., Nielsen J., Reciprocal inhibition in hemiplegic patients--a longitudinal study, Supplements to Clinical neurophysiology, 53:187-191 (2000)
- 11) Morita H., Crone C., Christenhuis D., Petersen N.T., Nielsen J.B., Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity, *Brain : a journal* of neurology, **124** (Pt 4) :826-837 (2001)
- 12) Nielsen J., Sinkjaer T., Toft E., Kagamihara Y., Segmental reflexes and ankle joint stiffness during co-contraction of antagonistic ankle muscles in man, *Experimental brain research*, **102** (2) :350-358 (1994)
- 13) Hirabayashi R., Edama M., Kojima S., Nakamura M., Ito W., Nakamura E., Kikumoto T., Onishi H., Effects of Reciprocal Ia Inhibition on Contraction Intensity of Co-contraction, *Frontiers in human neuroscience*, 12:527 (2018)
- 14) El-Tohamy A., Sedgwick E.M., Spinal inhibition in man: depression of the soleus H reflex by stimulation of the nerve to the antagonist muscle, *The Journal of physiology*, 337:497-508 (1983)
- 15) Crone C., Hultborn H., Mazieres L., Morin C., Nielsen J., Pierrot-Deseilligny E., Sensitivity of monosynaptic test reflexes to facilitation and inhibition as a function of the test reflex size: a study in man and the cat, *Experimental brain research*, 81 (1):35-45(1990)
- Baldissera F., Hultborn H., Illert M., Integration in spinal neuronal systems American Physiological Society 2:509-595(1981)
- 17) Okuma Y., Lee R.G., Reciprocal inhibition in hemiplegia: correlation with clinical features and

recovery, The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques, 23 (1):15-23(1996)

- 18) Jankowska E., McCrea D.A., Shared reflex pathways from Ib tendon organ afferents and Ia muscle spindle afferents in the cat, *The Journal of physiology*, 338:99-111 (1983)
- 19) Katz R, Penicaud A, Rossi A. Reciprocal Ia inhibition between elbow flexors and extensors in the human, *The Journal of physiology*, 437:269-286 (1991)
- 20) Baret M., Katz R., Lamy J.C., Penicaud A., Wargon I., Evidence for recurrent inhibition of reciprocal inhibition from soleus to tibialis anterior in man, *Experimental brain research*, **152** (1) :133-136 (2003)
- 21) McIntire S.L., Reimer R.J., Schuske K., Edwards R.H., Jorgensen E.M., Identification and characterization of the vesicular GABA transporter, *Nature*, 389 (6653) :870-876 (1997)
- 22) Faist M., Dietz V., Pierrot-Deseilligny E., Modulation, probably presynaptic in origin, of monosynaptic Ia excitation during human gait, *Experimental brain research*, **109** (3) :441-449 (1996)
- 23) Davidoff R.A., Shank R.P., Graham L.T., Jr., Aprison M.H., Werman R., Association of glycine with spinal interneurones, *Nature*, **214** (5089) :680-681(1967)
- 24) Aprison M.H., Werman R., The distribution of glycine in cat spinal cord and roots, *Life sciences*, 4 (21) :2075-2083(1965)
- 25) Rudomin P., Jimenez I., Quevedo J., Solodkin M., Pharmacologic analysis of inhibition produced by last-order intermediate nucleus interneurons mediating nonreciprocal inhibition of motoneurons in cat spinal cord, *Journal of neurophysiology*, 63 (1) :147-160 (1990)
- 26) Gao B.X., Stricker C., Ziskind-Conhaim L., Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks, *Journal of neurophysiology*, 86 (1) :492-502(2001)