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ABSTRACT
We exploit the widely-separated images of the lensed quasar SDSS J1029+2623 (zem=2.197, θ =

22′′.5) to observe its outflowing wind through two different sightlines. We present an analysis of three
observations, including two with the Subaru telescope in 2010 February (Misawa et al. 2013) and
2014 April (Misawa et al. 2014b), separated by 4 years, and one with the Very Large Telescope,
separated from the second Subaru observation by ∼2 months. We detect 66 narrow absorption lines
(NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar
based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values
of vej ∼ 59,000, 43,000, and 29,000 km s−1, which is reminiscent of filamentary structures obtained
by numerical simulations. There are no common intrinsic NALs at the same redshift along the two
sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline
distance between two lensed images. In addition to the NALs with large ejection velocities of vej >
1,000 km s−1, we also detect broader proximity absorption lines (PALs) at zabs ∼ zem. The PALs are
likely to arise in outflowing gas at a distance of r ≤ 620 pc from the central black hole with an electron
density of ne ≥ 8.7×103 cm−3. These limits are based on the assumption that the variability of the
lines is due to recombination. We discuss the implications of these results on the three-dimensional
structure of the outflow.
Subject headings: quasars: absorption lines – quasars: individual (SDSS J1029+2623)

1. INTRODUCTION
AGN outflows, potentially powered by one or more of

a variety of mechanisms (e.g., radiation force, magnetic
pressure, and magnetocentrifugal force), are important
ingredients of quasar central engines and likely play a role
in quasar and galaxy formation/evolution because: 1)
they extract angular momentum from accretion disks al-
lowing gas accretion to proceed (e.g., Blandford & Payne
1982; Emmering, Blandford, and Shlosman 1992; Konigl
& Kartje 1994; Everett 2005), leading to the growth of
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black holes, 2) they also provide energy and momentum
feedback to the interstellar medium of host galaxies and
to the intergalactic medium (IGM), and inhibit star for-
mation (e.g., Springel, Di Matteo, & Hernquist 2005),
and 3) they may promote metal enrichment of the in-
tergalactic medium (IGM) (e.g., Hamann et al. 1997b;
Gabel, Arav, & Kim 2006). These outflowing gases,
which are difficult to observe directly, have been detected
as absorption lines in the spectra of about 50% of all
quasars (e.g., Vestergaard 2003; Wise et al. 2004; Mis-
awa et al. 2007a; Nestor et al. 2008; Muzahid et al. 2013).
However, a limitation of these past studies is that they
observe the outflowing gas only along a single sightline
(i.e., one dimension) toward the nucleus of each quasar,
although the absorber’s physical conditions probably de-
pend on the location/orientation at which we observe it
(e.g., Ganguly et al. 2001; Elvis 2000). Thus, the internal
structure of outflowing winds is still largely unknown.

Multiple quasar images, produced by gravitational
lensing, provide a unique way to study the outflowing gas
along more than one sightline. Lensed quasars with large
image separation angles have a higher chance of revealing
structural differences in the outflowing winds, especially
in the vicinity of the continuum source. In this sense,
the quasar images that are lensed by a cluster of galaxies
(rather than a single massive galaxy) are very promis-
ing targets. Among three such lensed quasars, SDSS
J1029+2623 at zem ∼2.197 (Inada et al. 2006; Oguri et
al. 2008) is the best target because i) it has the largest
lensed quasar image separation (θ ∼ 22′′.5) ever observed
(see Figure 1 of Inada et al. 2006), and ii) it exhibits
absorption features in the blue wings of the C IV, N V,
and Lyα emission lines with ejection velocity of vej ≤
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1,000 km s−1, which could be the result of outflowing gas
moving toward us from the central region. We call them
Proximity Absorption Lines (PALs) throughout this pa-
per. We define PALs as a subcategory of Narrow Ab-
sorption Lines (NALs) with ejection velocity of vej ≤
1,000 km s−1. We use this terminology throughout the
paper to separate PALs from NALs with larger ejection
velocities.

Misawa et al. (2013) obtained high-resolution spectra
of the brighter two of the lensed images (images A and
B) with the Subaru telescope in 2010 February and found
several clear signs that the origin of the PALs is indeed
in the outflowing gas. First, they show the signature of
partial coverage, which means the absorbers do not cover
the background flux source completely. There also exists
a clear difference in the absorption profiles between the
spectra of images A and B, which can be explained by ei-
ther of the following two scenarios: (a) time variability of
the absorption features over a time scale corresponding
to the time delay between the two images (time varia-
tion scenario; Chartas et al. 2007)14, or (b) a difference in
the absorption between the different sightlines of the out-
flowing wind (multi-sightline scenario; Chelouche 2003;
Green 2006). However, with a single-epoch observation
we cannot distinguish between these scenarios. Misawa
et al. (2014b) performed a second observation about four
years (1514 days in the observed frame) after the first ob-
servation (which is longer than the time delay between
images A and B, ∆tAB ∼ 744 days), and found that the
PALs were nearly stable and that most of the differences
between images A and B still remained. This evidence
suggests a multi-sightline scenario where the absorber’s
size should be smaller than the physical distance between
the sightlines of the lensed images, thus not covering both
sightlines. A possible explanation is that there are a
number of small clumpy clouds in the outflowing stream.
Indeed, some of the outflowing gas is expected to consist
of small gas clouds (dcloud ≤ 10−3 pc) with very large
gas densities (ne ≥ 106 cm−3; Hamann et al. 2013; Joshi
et al. 2014). Furthermore, recent radiation-MHD simula-
tions by Takeuchi et al. (2013) reproduce variable clumpy
structures with typical sizes of 20 times the gravita-
tional radius (Rg), corresponding to dcloud ∼ 5×10−4 pc,
assuming a black-hole mass for SDSS J1029+2623 of
MBH ∼ 108.72 M� (Misawa et al. 2013).

Such clumpy clouds can be examined more easily
through narrow absorption lines (NALs, hereafter) with
large offset velocities from the quasar because the cor-
responding absorbers are (i) probably smaller than the
PAL absorbers and (ii) not so crowded in velocity space
as the PAL absorbers. Indeed, there are many NALs
detected in the spectra of both images A and B of
SDSS J1029+2623. Their origin is not only the out-
flowing wind (intrinsic NALs, hereafter) but also cos-
mologically intervening gas such as foreground galaxies
and the IGM (intervening NALs, hereafter). Although
it has been traditionally believed that many NALs that
fall within 5,000 km s−1 of the quasar emission redshift
(termed associated absorption lines or AALs) are physi-
cally associated with the quasar (e.g., Weymann et al.

14 The time delay between images A and B is ∆tAB ∼ 774 days
in the sense of A leading B, while the time delay between images B
and C ∆tBC is only a few days (Fohlmeister et al. 2013).

1979), we can separate intrinsic NALs from interven-
ing ones more effectively by performing partial coverage
analysis. In order to form a global picture of the outflow-
ing wind, we need to understand the physical conditions
of NAL absorbers (i.e., highly accelerated gas) as well as
PAL absorbers (i.e., weakly accelerated gas).

In this paper, we present the results from our new spec-
troscopic observation of SDSS J1029+2623 taken with
the Very Large Telescope (VLT), which enables us for
the first time to identify intrinsic NALs in a high quality
spectrum of this object. In §2, we describe the obser-
vations and data reduction. The methods used for ab-
sorption line detection and covering factor analysis are
outlined in §3. The results and discussion are presented
in §4 and §5. Finally, we summarize our results in §6. We
use a cosmology with H0=70 km s−1 Mpc−1, Ωm=0.3,
and ΩΛ=0.7 throughout the paper.

2. OBSERVATIONS
We acquired high resolution spectra of the brightest

two of the three lensed images of SDSS J1029+2623, A
and B with V = 18.72 and 18.67 mags, with the VLT
using the Ultraviolet and Visual Echelle Spectrograph
(UVES) in queue mode (ESO program 092.B-0512(A)).
The observations were performed from 2014 January 28
to February 26 (epoch E2, hereafter), which is ∼4 years
after the first observation on 2010 February 10 (epoch
E1, hereafter; Misawa et al. 2013), and ∼2 months before
the third observation on 2014 April 4 (epoch E3, here-
after; Misawa et al. 2014b) with Subaru using the High
Dispersion Spectrograph (HDS). We used a slit width of
1.′′2, corresponding to R ∼ 33,000, while Misawa et al.
(2013, 2014b) took R ∼ 30,000 and 36,000 spectra using
Subaru/HDS. The wavelength coverage is 3300–6600 Å
in the 390/564 nm setting, which covers the O VI, N V,
Si IV, and C IV doublets as well as the Lyα absorption
line at zabs ∼ zem. We also adopted 2×2 pixel binning
in both the spatial and dispersion directions to increase
the S/N ratio. The total integration time is 26,670s and
the final S/N ratio is about 23 pix−1 around 4700Å for
both images.

We reduced the data to extract the one-dimensional
spectra in a standard manner using the UVES Common
Pipeline Library (CPL release 6.6). We could not sepa-
rate the third image (image C, V = 20.63) from image B
completely because the typical seeing of our observation
(∼ 1.′′0–1.′′8) was comparable to the separation angle be-
tween images B and C (θ ∼ 1.′′85)15.

Table 1 gives a log of the current observation with
VLT/UVES as well as our past observations with Sub-
aru/HDS, in which we list the target name, date of obser-
vation, telescope/instrument used, spectral resolution,
total exposure time, and signal-to-noise ratio (S/N). The
S/N is evaluated around 4700 Å, close to the C IV mini-
BAL. In Figure 1, we show normalized spectra over the
full wavelength range of our observations for images A
and B. These spectra were binned every 0.5Å for display
purposes, and the 1σ errors are also shown.

3. DATA ANALYSIS

15 On the other hand, a flux contamination from the image C
is almost negligible in the image B spectrum because the former is
much fainter than the latter.
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First, using the line detection code search, writ-
ten by Chris Churchill, we detect all absorption fea-
tures whose confidence level is greater than 5σ in the
normalized spectrum of each lensed image. We then
identify N V, C IV, and Si IV doublets in the regions
from −1,000 km s−1 to 5,000 km s−1 (N V), from
−1,000 km s−1 to 70,000 km s−1 (C IV), and from
−1,000 km s−1 to 40,000 km s−1 (Si IV) around the corre-
sponding emission lines, with the maximum velocity set
in order to avoid the Lyα forest16. We also search for the
Mg II doublet in the whole range of the spectra. Absorp-
tion troughs that are separated by nonabsorbed regions
are considered to be separate lines. In total, 4 Mg II, 19
C IV, 2 N V, and 7 Si IV doublets are identified in the im-
age A spectrum, while 3 Mg II, 22 C IV, 2 N V, and 7 Si IV

doublets are identified in the image B spectrum. The
equivalent widths of both blue and red members of dou-
blets are measured for each line by integrating across the
absorption profile and these are listed in Table 2. We also
searched for 10 single metal lines (O I λ1302, Si II λ1190,
Si II λ1193, Si II λ1260, Si II λ1527, Al II λ1671,
C II λ1036, C II λ1335, Si III λ1207, and C III λ1548)
as well as Lyα and Lyβ and detected about 200 lines at
the same redshift as the doublet lines. These are sum-
marized in Table ??. Other single lines or unidentified
lines are not shown in Figure 1 and Tables 1–?? even if
they are detected at a confidence greater than 5σ.

3.1. dN/dz Analysis
One of the important properties of intrinsic NALs is

a number density excess of high-ionization doublets per
unit redshift (i.e., dN/dz; Hamann et al. 1997a, and ref-
erences therein). In order to compare the dN/dz from
our spectra with those from our previous study based on
37 quasar spectra (Misawa et al. 2007a), we construct a
complete sample including only NALs whose blue dou-
blet members would be detected even in the lowest S/N
spectrum in Misawa et al. (2007a). The corresponding
lower limits of rest-frame equivalent widths (EWs) are
EWrest

min = 0.056 Å, 0.038 Å, and 0.054 Å for C IV, N V,
and Si IV, respectively. Here, the values of EWrest

min de-
pend on the S/N ratio of the observed spectrum as

EW rest
min =

−U2 + U
√

U2 + 4(S/N)2(M2
LM−1

c + ML)

2(S/N)2(1 + zabs)
×∆λ(Å),

(1)
where U is the confidence level of the EW defined as
EW/σ(EW), and ML and MC are the numbers of pixels
over which the equivalent width and the continuum level
are determined (Young et al. 1979; Tytler et al. 1987).
Using equation (1), we confirm that the S/N of our VLT
spectra is always larger than the required values except
for the region between λobs ∼ 4500 – 4525 Å (Figure 2).
After removing weak NALs with EWrest < EWrest

min, we
have 12 C IV, 2 N V, and 3 Si IV doublets in image A
spectrum and 11 C IV, 2 N V, and 3 Si IV doublets in the
image B spectrum. We will call this the “homogeneous”
NAL sample, hereafter. Following Misawa et al. (2007a),
we also combined multiple NALs lying within 200 km s−1

16 Here, we define the velocity offset as positive for blueshifted
NALs from the quasar emission redshift that is determined from
Mg II emission line (Inada et al. 2006).

of each other into a single NAL “system” because clus-
tered lines are probably not independent even if they
have a cosmologically intervening origin (e.g., Sargent,
Steidel, & Boksenberg 1988).

All identified doublets (including both the homoge-
neous and inhomogeneous NAL samples) are listed in
Table 2, in which multiple NALs within 200 km s−1 of
each other are separated by horizontal lines. The table
gives the ion name (ion), flux-weighted absorption red-
shift (zabs), ejection velocity (vej) supposing they orig-
inate in the outflow, rest frame EWs of blue and red
members of the doublet (EWrest

b , EWrest
r ), identification

number in Figure 1 (ID), reliability class of intrinsic lines
(described later), ionization class (described later), and
velocity difference from the first doublet at the lowest
redshift in each absorption system (∆v). Table ?? sum-
marizes other information including the flux-weighted
line width of each system on a velocity scale, σ(v), as
defined in Misawa et al. (2007a), and other transitions
that are detected at the same redshift, as well as the col-
umn density (log N), Doppler parameter, b, and covering
factor, Cf , for each absorption component in the system.

3.2. Partial Coverage Analysis
Among several criteria, i) time variability, ii) par-

tial coverage, and iii) line locking are the most reliable
properties to distinguish intrinsic NALs from intervening
NALs (Barlow & Sargent 1997; Hamann et al. 1997a, and
references therein). When compared with broad intrin-
sic absorption lines, intrinsic NALs are less likely to vary
(Misawa et al. 2014a; Chen et al. 2015) and when they
do vary, their variation amplitude is small (Wise et al.
2004; Misawa et al. 2014a). Therefore, the variability
criterion does not offer an efficient way of identifying in-
trinsic NALs.

Partial coverage analysis is quite useful for our spectra
because the resolving power is high enough to deblend
NALs into multiple components. Using the Voigt pro-
file fitting code minfit (Churchill 1997; Churchill et al.
2003), we deblended NALs into 86 and 91 components in
images A and B, respectively. We do not include the Si IV

NAL at zabs = 1.8909 because the blue and red members
of the doublet are both blended with other lines. With
minfit, we fit each NAL profile using the redshift (z),
column density (log N in cm−2), Doppler parameter (b
in km s−1), and covering factor (Cf) as free parameters.
The covering factor (Cf) is the fraction of photons from
the background source that pass through the absorber. If
the background source is uniformly bright, then Cf also
represents the fraction of the background source (i.e.,
the continuum source and/or broad emission line regions,
BELRs) that is occulted by foreground absorbers along
our sightline. If Cf is less than unity, it is likely that
the absorbers are part of a quasar outflow because cos-
mologically intervening absorbers like substructures in
foreground galaxies and the IGM are less likely to have
internal structures as small as a size of the background
flux sources (e.g., Wampler et al. 1995; Barlow & Sargent
1997). The covering factor is evaluated in an unbiased
manner as

Cf =
(Rr − 1)2

1 + Rb − 2Rr
, (2)

where Rb and Rr are the residual (i.e., unabsorbed) fluxes
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of the blue and red members of a doublet in the nor-
malized spectrum (c.f., Hamann et al. 1997b; Barlow &
Sargent 1997; Crenshaw et al. 1999). If minfit gives
unphysical covering factors for some components, e.g.,
negative or greater than 1, we rerun the code assuming
Cf = 1 only for those components because the Cf values
are very sensitive to continuum level errors, especially
for full coverage doublets (Misawa et al. 2005). In addi-
tion to the fitting method above, we evaluate Cf values
for each pixel as Ganguly et al. (1999) did (pixel-by-pixel
method). The fitting results by both methods are shown
in Figure 3 and the fit parameters by the fitting method
are summarized in Table ??. We have confirmed that
the Cf values provided by the two methods are in good
agreement with each other.

4. RESULTS
4.1. Narrow Absorption Lines (NALs)

Using our NAL sample toward the lensed images of
SDSS J1029+2623, we perform several statistical anal-
yses. In these analyses, in order to avoid any possible
biases we do not include the two C IV NALs at zabs ∼
1.9322 and 1.9788 that are covered in the Subaru spec-
trum (Misawa et al. 2013) but not covered by our VLT
data.

4.1.1. dN/dz analysis

In Table 4, we summarize the number density of homo-
geneous NAL systems per unit redshift (dN/dz) or per
unit velocity offset from the quasar (dN/dβ) for C IV,
N IV, and Si IV, along with the Poisson noise in these
quantities (Gehrels 1986). All systems are also classified
into one of two categories according to the offset veloc-
ity from the quasar; associated absorption lines (AALs)
with vej ≤ 5,000 km s−1, and non-AALs with vej >
5,000 km s−1, following Misawa et al. (2007a). We found
that the dN/dz values for C IV, N V, and Si IV toward this
one quasar, SDSS J1029+2623, are larger than the aver-
age values in the larger sample of Misawa et al. (2007a)
by factors of ∼3, ∼6, and ∼2, respectively, although this
enhancement is not statistically significant because of the
small number of NALs in our spectra. Because Misawa et
al. (2007a) discovered that at least ∼20% of C IV NALs
originate from winds based on partial coverage analysis,
statistically we expect to detect two or more intrinsic
C IV NALs among ∼10 homogeneous C IV NALs in the
spectra of images A and B.

4.1.2. Intrinsic or Intervening NALs

High-velocity NALs blueshifted with vej > 1000 km s−1

are expected to be outside of the range of velocities where
BELs are found, and thus, they absorb mostly continuum
light. The existence of partial coverage in high-velocity
NALs suggests that the size of absorbers is comparable
to or smaller than the continuum source (i.e., dcloud ≤
Rcont). Following Misawa et al. (2007a), we separate
all NALs (including those in the inhomogeneous sample)
into three classes (classes-A, B, and C) based on partial
coverage analysis, where class-A includes NALs most re-
liably classified as intrinsic while class-C includes NALs
that are consistent with full coverage or that cannot be
classified. Class-B contains NALs that show line-locking,
which is a signature of a radiatively driven outflowing

wind and is only detectable if our sightline is approxi-
mately parallel to the gas motion, as often seen in NALs
(e.g., Benn et al. 2005; Bowler et al. 2014). Class-B
also contains systems that have tentative evidence for
partial coverage. As a result, 4 C IV NALs (including
PALs) are classified as intrinsic (two class-A and two
class-B) among the 12 C IV NALs in the homogeneous
sample from the spectrum of image A, while 3 C IV NALs
are classified as intrinsic (two class-A and one class-B)
among 11 NALs in the spectrum of image B. The frac-
tion of intrinsic NALs (27 – 33%) is somewhat larger
than the average value of ∼20% (Misawa et al. 2007a),
although our sample size is small. If we include the in-
homogeneous sample, 5 C IV NALs are classified as 3
class-A and 2 class-B among 19 NALs toward image A,
while 9 out of 22 C IV NALs are classified into 4 class-A
and 5 class-B NALs toward image B. In addition to in-
trinsic C IV NALs, we detected two class-B Si IV NALs
only toward image A in homogeneous sample, and three
class-B Si IV NALs in each of the image A and B spectra
after including systems from the inhomogeneous sample.
It is also noteworthy that we detect a large number of
line-locked NALs: 2 C IV and 3 Si IV NALs in image A
and 5 C IV and 3 Si IV NALs in image B, while only five
systems are line-locked among 138 homogeneous NALs
toward 37 quasars (Misawa et al. 2007a). This result
strongly suggests that our sightline toward the central
source is almost parallel to the outflowing streamline.

4.1.3. Ionization Conditions

The outflowing winds in the vicinity of the flux source
are probably more highly ionized than most intervening
absorbers due to strong UV radiation from the contin-
uum source, although it depends on the gas density of
the absorbers. Indeed, a high ionization state has been
used as one indicator of the intrinsic properties of ab-
sorbers (Hamann et al. 1997a, and references therein).
Broad absorption lines (BALs) are often classified into
three categories according to their ionization level: high-
ionization BALs (HiBALs), low-ionization BALs (LoB-
ALs), and extremely low-ionization BALs showing Fe II

lines (FeLoBALs) (Weymann et al. 1991). A similar clas-
sification has also been performed for NALs (Bergeron et
al. 1994; Misawa et al. 2007a). Motivated by the liter-
ature, we classify our NALs into three categories, based
on the detection of absorption lines in low (ionization po-
tential; IP < 25 eV), intermediate (IP = 35 – 50 eV), and
high (IP > 60 eV) ionization levels17. Interestingly, some
class-A NAL systems include low ionization lines (see Ta-
ble 2), which suggests that intrinsic NAL absorbers have
multiple phases with different ionization states, as noted
in Misawa et al. (2007a).

4.1.4. Similarities in NALs between Sightlines

Here, we present a new method of identifying intrin-
sic NALs by exploiting our multi-sightline observation.
If NALs with similar line profiles are detected at the
same redshift toward two sightlines, the corresponding

17 An important caveat here is that we do not necessarily de-
tect all absorption lines because of the detection limits due to line
strength, observed wavelength coverage, and line blending (e.g., in
Lyα forest).
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absorber must have a size larger than the physical dis-
tance between the two sightlines. The absorber also can-
not have any internal structures on the scale of the sight-
line separation. Although foreground galaxies and IGM
structures also can cover both sight lines (whose physi-
cal separation is ∼kpc or ∼Mpc scale), they usually have
significant internal velocity structures on those scales, as
often seen in the spectra of lensed quasars (e.g., Ellison
et al. 2004). Only intrinsic absorbers can satisfy the re-
quirement of having very similar profiles because their
sizes can be larger than the sightline separation (e.g.,
sub-parsec scale) if they are at a small distance from the
flux source (e.g., r < 1 kpc). Based on the ejection ve-
locity distribution of class-A, B, and C NALs (Figure 4),
in Figure 5 we summarize the distribution of velocity dif-
ferences between NALs and PALs in the two sightlines
(∆v) for systems within ∆v ≤ 200 km s−1 between the
two sightlines. The distribution is almost uniform up to
∆v ∼ 200 km s−1 with a clear peak near ∆v ∼ 0 km s−1.
Among eight NAL pairs with ∆v ≤ 10 km s−1, four are
C IV and N V PALs at zabs ∼ zem, which we will discuss
later. The other four NAL pairs are C IV NALs at zabs

∼ 1.8909, 2.1349, and 2.1819, and a Si IV pair at zabs

∼ 1.8909. Although the velocity shift is very small for
these NAL pairs, their line profiles are clearly different as
compared in Figure 6. This means our two sightlines go
through different absorbers or different regions of a sin-
gle absorber. In either event, we cannot conclude that
these are intrinsic NALs based only on this analysis. On
the other hand, it is intriguing that no NAL pairs that
are classified into class-A/B have a common ejection ve-
locity or line profile. For example, the C IV NALs at
zabs = 1.7652 toward image A and at zabs = 1.7650 to-
ward image B are both classified as class-A NALs. Al-
though their ejection velocities are very close each other,
their line centers and profiles are obviously different, as
shown in Figure 7. We also note that the difference is re-
markable in all three epochs (see Figure 8). This means
the multi-sightline scenario (i.e., that two sightlines pass
through different regions of the outflow) is also applica-
ble for intrinsic NALs with large ejection velocity as well
as for PALs as already confirmed in Misawa et al. (2013,
2014b).

4.1.5. Time Variability of NALs

Because of the lower data quality (S/N ∼ 10 pixel−1)
and narrower effective wavelength coverage of the Sub-
aru/HDS spectra taken in epochs E1 and E3, we cannot
monitor NALs for time variability analysis with only a
few exceptions. As an example, we compare spectra ob-
tained at three epochs around the strong C IV NALs at
zabs = 1.8909–1.9138 (ID = 35–44) in image A and C IV

NALs at zabs = 1.8909–1.9119 (ID = 41–48) in image B
as shown in Figure 9. These NALs are obviously not vari-
able, which is consistent with the past result that NALs
with large ejection velocities are rarely variable (Chen et
al. 2015).

4.2. Proximity Absorption Lines (PALs)
The absorption line group at zabs ∼ zem with an ejec-

tion velocity of vej < 1000 km s−1 has already been ob-
served twice in 2010 February (epoch E1) and 2014 April
(epoch E3) with Subaru/HDS. Its origin is probably in

the outflowing gas because: i) there is evidence for par-
tial coverage (e.g., there exists a clear residual flux at the
bottom of the Lyα and N V absorption lines even though
they appear to be saturated.), ii) the profiles are vari-
able, and iii) the profiles show signatures of line-locking
(Misawa et al. 2013, 2014b). The most important result
from these past observations is that the absorption pro-
files of the Lyα, N V, and C IV PALs in the spectra of
images A and B are clearly different, especially for lines
at vej < 0 km s−1 (see Figure 10). There are at least three
possible origins for the difference: a) a micro-lensing ef-
fect, b) time delay between the images, and c) different
absorber structure along the different sightlines. Among
these, the first idea is immediately rejected because the
lensed images show a common ratios between the radio,
optical, and X-ray fluxes (Ota et al. 2012; Oguri et al.
2012), which is not expected for micro-lensing. We can
also reject the time delay effect because the variability is
almost negligible between epochs E1 and E3 (Misawa et
al. 2014b). A difference in column density between the
two sightlines is the only acceptable explanation. To our
knowledge, this is the first time that an outflowing wind
has been observed along multiple sightlines. Hereafter,
we call the PALs at vej < 0 km s−1 (showing sightline
difference) narrow PALs and those at vej > 0 km s−1

(showing similar line profiles between sightlines) broad
PALs (see Figure 10).

Our observation with VLT/UVES not only gives an
additional epoch for monitoring the PALs but enables us
to study the detailed velocity structure of PALs using
higher quality spectra with a S/N ratio double that of
the past observations with Subaru. We first confirm the
line-locking pattern in velocity plots of the C IV PAL as
shown in Figure 11, which was already noted in Misawa
et al. (2013). Like the other NAL absorbers, the PAL
absorbers also appear to be outflowing almost parallel
to our sightline. We also reconfirm that the C IV PALs
became shallower (i.e., decreasing in equivalent width)
over a large velocity range of the profile between epochs
E1 and E2/E3 (see Figure 11) at ∆trest ∼1.3 years in
the quasar rest-frame. However, these lines are almost
stable on the shorter time scales of ∆trest ∼0.05 years
between epochs E2 and E3. The broad spectral coverage
of the VLT/UVES spectra allows us to detect for the
first time the O VI doublet corresponding to the PAL
absorber (see Figure 10). There is also a hint of the Si IV

doublet detected, but it appears blended with other lines
at lower redshift.

4.2.1. Comparison of Covering Factors

In addition to line profiles and strengths, we also com-
pare covering factors for the clean part of the C IV and
N V PALs in the three epochs. The fitting parameters to
the PALs in epoch E2 with minfit are summarized in Ta-
ble ??. The total column densities of C IV and N V PALs
after summing all Voigt components are log(NNV/cm−2)
= 15.62 and log(NCIV/cm−2) = 15.90 in image A and
16.04 and 15.89 in image B spectrum. These values are
all consistent with the corresponding values that we mea-
sured in epoch E1 (Misawa et al. 2013) with differences
of a factor of ≤ 2. Because all PALs have small offset
velocities and are located on the BELs in the spectra,
we should consider the BELRs as well as the contin-
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uum source as the background flux source. Because the
C IV PAL is partially self-blended (i.e., blending of the
blue members of one doublet with the red member of
another doublet), we can compare covering factors effec-
tively only for the narrow PALs at vej ∼ −100–0 km s−1

(corresponding to ∆v ∼ 400–500 km s−1 in Figure 12),
for which self-blending is negligible18.

We show the fitting results for the PALs in epoch E2
in Figure 12 and Table ??. The average covering fac-
tors of C IV and N V at vej ∼ −100–0 km s−1 (i.e., ∆v
∼ 400–500 km s−1 in Figure 12) are Cf = 0.47±0.03
and 0.58±0.05 toward image A, and Cf = 0.23±0.02 and
0.39±0.08 toward image B. These values are all consis-
tent with the corresponding values in epoch E1 toward
image A (Cf = 0.47±0.05 and 0.61±0.07) and image B
(Cf ∼ 0.2 and 0.35±0.05)19 and in epoch E3 toward im-
age A (Cf = 0.45±0.09 and 0.54±0.09) and image B (Cf

= 0.20±0.05 and 0.34±0.19). Thus, covering factors are
not variable at least on a timescale of ∆trest ∼ 1.3 years.

The N V PALs all have larger Cf values than that for
C IV, which is consistent with past results that higher
ionization transitions tend to have larger coverage frac-
tions (e.g., Petitjean & Srianand 1999; Srianand & Pe-
titjean 2000; Misawa et al. 2007a; Muzahid et al. 2015).
This result suggests that i) the size (i.e., distance from
the central black hole) of the N V BELR is smaller than
that of the C IV BELR, and/or ii) the size of the N V

absorbers is larger than that of the C IV absorbers. It is
also interesting that the PALs in the image A spectrum
always have larger Cf values than those in the image B
spectrum, which is additional evidence for variations in
the structure along multiple sightlines.

5. DISCUSSION
5.1. Velocity anisotropies in NAL absorbers

Line-locking is seen in both NALs and PALs, thus we
are likely to be observing the quasar almost along the
direction of the outflow. Nonetheless, we discovered a
velocity difference between the two sightlines (see Ta-
ble 2). Given the redshifts of the lens (zl = 0.58; Oguri
et al. 2008) and the source (zs = 2.197) the separation
angle of the light rays that form images A and B, as seen
from the source20, is θ′ ∼14.′′6. This velocity gradient
suggests that the outflowing wind has internal velocity
anisotropies on a scale of ∼1 km s−1 arcsec−1 on aver-
age. Indeed, the hydrodynamic simulations of Proga &
Kallman (2004) show this type of internal velocity vari-
ations. A recent radiation-MHD simulation by Takeuchi
et al. (2013) also reproduced such velocity variations over

18 Negative ejection velocity for these components could be due
to our underestimation of these values because the emission redshift
is determined from broad UV emission lines, as done for this quasar
by Inada et al. (2006), which are systematically blueshifted from
the systemic redshift that is measured by narrow, forbidden lines
(see, e.g., Corbin 1990; Tytler & Fan 1992; Brotherton et al. 1994;
Marziani et al. 1996) by about 260 km s−1.

19 Because no absorption component was used for C IV PAL at
vej ≤ 0 km s−1 in the epoch E1 spectrum (Misawa et al. 2013), we
adopt an average line depth for this region as a covering factor.

20 The separation angle as seen by the source is given by θ′

= (Dol/Dsl) × θ, where θ is the observed separation angle of the
images (22.′′5) and Dol and Dsl = ((1 + zs)/(1 + zl)) × Dls are
angular diameter distances from the observer to the lens and from
the source to the lens, respectively.

a typical spatial scale of ∼ 5×10−4 pc. This is consistent
with the size of NAL absorbers, which is also compara-
ble to the size of the continuum source (∼ 2.5×10−4 pc;
Misawa et al. 2013). However, we should note that the
velocity variations in the simulations are found in the
inner part of the wind at distances of ∼50Rg from the
center.

The velocity distribution of intrinsic NALs that are
classified into Class-A or B appears to cluster around
values of vej ∼ 59,000, 43,000, and 29,000 km s−1, except
for two intrinsic NALs at vej ∼ 49,500 km s−1 (class-A)
and ∼ 8,500 km s−1 (class-B) in the image B spectrum
(Figure 4). These clustering patterns are reminiscent of
the filamentary structures obtained by numerical simu-
lations (e.g., Proga, Stone, & Kallman 2000). If these
patterns are indeed due to filamentary structures, there
should exist some velocity anisotropies within them. Ve-
locity dispersions in the three intrinsic NAL clusters are
δv ∼ 900, 260, and 1200 km s−1 respectively, which cor-
respond to about 1.6%, 0.6%, and 4.0% of their average
ejection velocity.

5.2. Ionization condition in PAL absorbers
The Lyα, C IV, and N V PALs have been monitored

at three epochs (E1, E2, and E3) between 2010 Febru-
ary and 2014 April. Between epochs E1 and E2/E3,
C IV PALs show a clear variation in their strength (i.e.,
depth). There are several possible reasons for this time
variability: (a) gas motion across our line of sight (e.g.,
Hamann et al. 2008; Gibson et al. 2008; Muzahid et al.
2015), (b) changes in the ionization state of the absorber
(e.g., Hamann et al. 2011; Misawa et al. 2007b), and (c)
redirection of photons around the absorber by scatter-
ing material (e.g., Lamy & Hutsemékers 2004; Misawa
et al. 2010). Among these, the first scenario can be re-
jected because all absorption components in the C IV

PAL vary in concert, which requires the implausible sit-
uation in which all clouds cross our sightline simulta-
neously (c.f. Misawa et al. 2007b). The third scenario
is also less likely because it requires a variation in the
covering factor while the Cf values remain almost sta-
ble both in C IV and N V PALs between epochs E1 and
E2/E3. Thus, only the scenario involving a change in
ionization state deserves further investigation. This sce-
nario is further separated into two variants: i.e., C3+

ions are ionized to C4+ or they recombine to C2+. Both
variants of this scenario can explain the decreasing EW
of the C IV PALs. Without knowing an absorber’s ion-
ization parameter21, we cannot tell which one is more
likely. If the latter variant applies, we can place con-
straints on the electron density and the distance from
the ionizing photon source by the same prescription as
used in Narayanan et al. (2004), taking the variability
time scale as an upper limit to the recombination time.
Based on the observation that the C IV PALs vary be-
tween epochs E1 and E3 over ∆tobs = 1514 days (i.e.,
∆trest = 474 days)22 we can place a lower limit on the

21 The ionization parameter U is defined as the ratio of hydrogen
ionizing photon density (nγ) to the electron density (ne).

22 We compare spectra in epochs E1 and E3 instead of epochs
E1 and E2 because the E2 observation spans the time range 2014
January 28 to February 26, which gives an additional uncertainty
for measuring the variation time scale.
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electron density of the absorber as ne > 8.7× 103 cm−3,
and an upper limit on the distance from the flux source
as r < 620 pc, assuming U ∼ 0.02, the value at which
the C IV and N V ions are close to the optimal ionization
states for those elements (e.g., Hamann et al. 1995).

5.3. Global Picture of the Outflow from
SDSS J1029+2623

In Table 5, we summarize the physical properties of
broad PALs, narrow PALs, and intrinsic NALs. We also
present a possible geometry of the outflow along our two
sightlines in Figure 13 based on our previous constraints.

First, we see almost the same absorption profiles of
Lyα, N V, and C IV PALs in the two lensed images ex-
cept for a clear difference in the narrow PALs at vej ∼
−100–0 km s−1. We also confirm that none of the in-
trinsic NALs have common absorption profiles between
the images. These results suggest that the size of the
broad PAL absorbers are larger than the projected sepa-
ration between sightlines at the distance of the absorbers,
rθ, while the narrow PAL absorbers and NAL absorbers
have sizes smaller than rθ. Such common absorption pro-
files are, however, observable regardless of the absorber’s
size, if their distance from the flux source is smaller than
the boundary radius rb at which the two sightlines of
lensed images become fully separated with no overlap
(Misawa et al. 2013). The boundary distance is ∼3.5 pc
for SDSS J1029+2623 if only the continuum source is
counted. If we also consider the BELR (whose size is
estimated to be ∼0.09 pc)23 as the background source,
rb would be ∼1200 pc (see Figure 13).

We can also place constraints on the absorber size
based on partial covering analysis. Intrinsic NALs with
large ejection velocities have partial coverage, although
they absorb only the continuum photons. This means
their physical scale is comparable to or smaller than the
size of the continuum source, dcloud ≤ 2.5×10−4 pc. On
the other hand, broad PAL absorbers cover almost en-
tirely both the BELR and the continuum source, which
means the size of the absorbers as a whole is compara-
ble to or larger than the BELR size, ≥ 0.09 pc. Narrow
PAL absorbers may consist of a number of small clumpy
clouds because they show partial coverage.

In our VLT/UVES spectra, we detected high-
ionization transitions like O VI and N V in the PAL
systems, while the intrinsic NAL systems are in various
ionization states, with or without high-ionization tran-
sitions, as already noted in the literature (e.g., Misawa
et al. 2007a; Ganguly et al. 2013). Some C IV NAL ab-
sorbers also show N V transitions, while others do not.
Because Lyα and N V in the PAL system are less vari-
able than C IV and because N V has larger covering factor
than C IV, the cross-section of Lyα and N V should be
larger than that of C IV. PAL absorbers with strong O VI

lines are probably located much closer to the ionizing flux
source than NAL absorbers, although this conclusion de-
pends on the density of the absorber.

It is well known that both broad and narrow absorption
lines at zabs ∼ zem tend to vary (Wise et al. 2004; Misawa
et al. 2014a), while NALs with large ejection velocities
are rarely variable (e.g., Chen et al. 2015). Indeed, the

23 This is calculated by Misawa et al. (2013) based on the em-
pirical equation in McLure & Dunlop (2004).

PALs in our spectra are variable, while most of the C IV

NALs are probably stable between the three epochs, as
we observed for a few strong C IV NALs. Misawa et
al. (2014a) suggest that broader absorption lines like the
broad PALs can vary mainly due to a change in their
ionization state while narrow absorption lines like narrow
PALs and NALs vary primarily due to the gas motion
transverse to our sightlines. The gas motion scenario
could explain why narrow PALs are variable but high-
velocity NALs are not. Based on the dynamical model of
Murray et al. (1995) and more recent investigations (e.g.,
Misawa et al. 2005; Hall et al. 2011), the absorbers at
larger distance from the center have small transverse (i.e.,
orbital) velocities compared to their radial velocities. If
intrinsic NALs lie at larger distances than narrow PALs,
their small transverse velocities would rarely lead to time
variability, while the large transverse velocities of narrow
PALs can lead to time variability more frequently.

6. SUMMARY
In this study, we performed a spectroscopic observa-

tion for images A and B of the gravitationally lensed
quasar SDSS J1029+2623, and monitored the absorp-
tion profiles in these spectra as well as in the previ-
ous two observations. Using high quality spectra taken
with VLT/UVES, we detected intrinsic narrow absorp-
tion lines (NALs) as well as broader, proximity absorp-
tion lines (PALs), and fit models to the line profiles.
Based on the results of our multi-sightline spectroscopy,
we discuss a possible geometry and internal structure of
the outflowing wind along our sightlines. Our main re-
sults are as follows.

� We detected 66 NALs, of which 24 are classified
as intrinsic NALs (physically associated with the
quasar) based on partial coverage analysis.

� Class-A and B NALs cluster at vej ∼ 59,000,
43,000, and 29,000 km s−1, which is reminiscent of
the filamentary structures that are often obtained
in numerical simulations.

� Our multiple sightline observation suggests that
the size of the broad PAL absorbers are larger than
the projected distance between sightlines (rθ) while
the narrow PAL absorbers and intrinsic NAL ab-
sorbers have sizes smaller than rθ if their radial
distances are greater than the boundary distance.

� While PAL systems show only high ionization tran-
sitions, including O VI, intrinsic NAL systems show
a wide range of ionization conditions with and
without low ionization transitions like O I, Al II,
and Si II, as noted in the literature.

� No class-A/B NALs (i.e., candidates for intrinsic
NALs) have common absorption profiles in the two
lensed images, which means that the outflow has
an internal velocity structure whose typical spatial
scale is smaller than the physical distance between
the sightlines (i.e., ≤ rθ).

� Short-time variation in the PALs is probably due
to a change in the ionization state of the gas. If this
is the case, we can place a lower limit on the gas
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density as ne ≥ 8.7× 103 cm−3 and an upper limit
on the absorber’s distance from the flux source as
r ≤ 620 pc.

� Based on our best knowledge, we present a possible
geometry of the outflow along our two sightlines,
in which we identify different structures in the out-
flowing wind that can produce, respectively, broad
PALs, narrow PALs, and NALs with large ejection
velocities.

For further investigations of the outflow’s internal
structure, especially in the transverse direction, we
should perform the same observations for image C of
SDSS J1029+2623. We also aim to observe several lensed
quasars with smaller separation angles (θ ∼ 2′′) by a sin-
gle massive galaxy to examine ∼10 times finer internal
structure in an outflow, as already mentioned in Misawa
et al. (2014b).

We thank the anonymous referee for comments that
helped us improve the paper. We would like to thank

Masamune Oguri, Poshak Gandhi, and Chris Culliton
for their valuable comments. We also would like to
thank Christopher Churchill for providing us with the
minfit and search software packages. The research
was supported by the Japan Society for the Promotion
of Science through Grant-in-Aid for Scientific Research
15K05020, JGC-S Scholarship Foundation, and partially
supported by MEXT Grant-in-Aid for Scientific Research
on Innovative Areas (No. 15H05894). CS acknowledges
support from CONICYT-Chile through Becas Chile
74140006. FEB acknowledges support from CONICYT-
Chile (Basal-CATA PFB-06/2007, FONDECYT Regular
1141218, ”EMBIGGEN” Anillo ACT1101) and the Min-
istry of Economy, Development, and Tourism’s Millen-
nium Science Initiative through grant IC120009, awarded
to The Millennium Institute of Astrophysics, MAS. JCC
and ME acknowledge support from the National Science
Foundation through award AST-1312686.

REFERENCES

Arav, N., Borguet, B., Chamberlain, C., Edmonds, D., &
Danforth, C. 2013, MNRAS, 436, 3286

Benn, C. R., Carballo, R., Holt, J., et al. 2005, MNRAS, 360, 1455
Barlow, T. A., & Sargent, W. L. W. 1997, AJ, 113, 136
Bergeron, J., et al. 1994, ApJ, 436, 33
Blandford, R.D. & Parne, D.G., 1982, MNRAS, 199, 883
Bowler, R. A. A., Hewett, P. C., Allen, J. T., & Ferland, G. J.

2014, MNRAS, 445, 359
Brotherton, M. S., Wills, B. J., Steidel, C. C., & Sargent,

W. L. W. 1994, ApJ, 423, 131
Chartas, G., Eracleous, M., Dai, X., Agol, E., & Gallagher, S.

2007, ApJ, 661, 678
Chen, Z.-F., Gu, Q.-S., Chen, Y.-M., & Cao, Y. 2015, MNRAS,

450, 3904
Chelouche, D. 2003, ApJ, 596, L43
Churchill, C. W., Vogt, S. S., & Charlton, J. C. 2003, AJ, 125, 98
Churchill, C. W. 1997, Ph.D. Thesis, Univ. California, Santa Cruz
Corbin, M. R. 1990, ApJ, 357, 346
Crenshaw, D. M., Kraemer, S. B., Boggess, A., Maran, S. P.,

Mushotzky, R. F., & Wu, C.-C. 1999, ApJ, 516, 750
Gehrels, N. 1986, ApJ, 303, 336
Dorodnitsyn, A. V. 2009, MNRAS, 393, 1433
Dunn, J. P., Bautista, M., Arav, N., et al. 2010, ApJ, 709, 611
Ellison, S. L., Ibata, R., Pettini, M., et al. 2004, A&A, 414, 79
Elvis, M. 2000, ApJ, 545, 63
Emmering, R.T., Bladford, R.D., & Shlosman, I., 1992, ApJ, 385,

460
Everett, J. E., 2005, ApJ, 631, 689
Fohlmeister, J., Kochanek, C. S., Falco, E. E., et al. 2013, ApJ,

764, 186
Foltz, C., Wilkes, B., Weymann, R., & Turnshek, D. 1983, PASP,

95, 341
Gabel, J.R., Arav, N., & Kim, T.-S. 2006, ApJ, 646, 742
Ganguly, R., Lynch, R. S., Charlton, J. C., et al. 2013, MNRAS,

435, 1233
Ganguly, R., Bond, N. A., Charlton, J. C., et al. 2001, ApJ, 549,

133
Ganguly, R., Eracleous, M., Charlton, J. C., & Churchill, C. W.

1999, AJ, 117, 2594
Gibson, R. R., Brandt, W. N., Schneider, D. P., & Gallagher,

S. C. 2008, ApJ, 675, 985
Green, P. J. 2006, ApJ, 644, 733
Hall, P. B., Brandt, W. N., Petitjean, P., et al. 2013, MNRAS,

434, 222
Hall, P. B., Anosov, K., White, R. L., et al. 2011, MNRAS, 411,

2653
Hamann, F., Chartas, G., McGraw, S., et al. 2013, MNRAS, 435,

133
Hamann, F., Kanekar, N., Prochaska, J. X., et al. 2011, MNRAS,

410, 1957
Hamann, F., Kaplan, K. F., Rodŕıguez Hidalgo, P., Prochaska,
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Lamy, H., & Hutsemékers, D. 2004, A&A, 427, 107
Marziani, P., Sulentic, J. W., Dultzin-Hacyan, D., Calvani, M., &

Moles, M. 1996, ApJS, 104, 37
McLure, R. J., & Dunlop, J. S. 2004, MNRAS, 352, 1390
Misawa, T., Charlton, J. C., & Eracleous, M. 2014a, ApJ, 792, 77
Misawa, T., Inada, N., Oguri, M., et al. 2014b, ApJ, 794, L20
Misawa, T., Inada, N., Ohsuga, K., et al. 2013, AJ, 145, 48
Misawa, T., Kawabata, K. S., Eracleous, M., Charlton, J. C., &

Kashikawa, N. 2010, ApJ, 719, 1890
Misawa, T., Charlton, J. C., Eracleous, M., Ganguly, R., Tytler,

D., Kirkman, D., Suzuki, N., & Lubin, D. 2007a, ApJS, 171, 1
Misawa, T., Eracleous, M., Charlton, J. C., & Kashikawa, N.

2007b, ApJ, 660, 152
Misawa, T., Eracleous, M., Charlton, J.C., & Tajitsu, A., 2005,

ApJ, 629, 115
Murray, N., Chiang, J., Grossman, S. A., & Voit, G. M., 1995,

ApJ, 451, 498
Muzahid, S., Srianand, R., Charlton, J., & Eracleous, M. 2015,

arXiv:1509.07850
Muzahid, S., Srianand, R., Arav, N., Savage, B. D., & Narayanan,

A. 2013, MNRAS, 431, 2885
Narayanan, D., Hamann, F., Barlow, T., Burbidge, E.M., Cohen,

R.D., Junkkaribeb, V., & Lyons, R., 2004, ApJ, 601, 715
Nestor, D., Hamann, F., & Rodriguez Hidalgo, P. 2008, MNRAS,

386, 2055
Nomura, M., Ohsuga, K., Wada, K., Susa, H., & Misawa, T.

2013, PASJ, 65,
Oguri, M., Schrabback, T., Jullo, E., et al. 2012, arXiv:1209.0458
Oguri, M., Ofek, E. O., Inada, N., et al. 2008, ApJ, 676, L1
Ota, N., Oguri, M., Dai, X., et al. 2012, arXiv:1202.1645
Petitjean, P. & Srianand, R., 1999, A&A, 345, 73
Proga, D., & Kallman, T. R. 2004, ApJ, 616, 688
Proga, D., Stone, J. M., & Kallman, T. R., 2000, ApJ, 543, 686
Sargent, W.L.W., Boksenberg, A., & Steidel, C.C., 1988, ApJS,

68, 539
Springel, V., Di Matteo, T., & Hernquist, L. 2005, ApJ, 620, L79
Srianand, R. & Petitjean, P., 2000, A&A, 357, 414
Takeuchi, S., Ohsuga, K., & Mineshige, S. 2013, PASJ, 65, 88
Tytler, D., & Fan, X.-M. 1992, ApJS, 79, 1
Tytler, D., Boksenberg, A., Sargent, W. L. W., Young, P., &

Kunth, D., 1987, ApJS, 64, 667



Multi-Sightline Observation of NALs 9

Vestergaard, M., 2003, ApJ, 599, 116
Wampler, E. J., Chugai, N. N., & Petitjean, P. 1995, ApJ, 443,

586
Weymann, R. J., Morris, S. L., Foltz, C. B., & Hewett, P. C.

1991, ApJ, 373, 23
Weymann, R. J., Williams, R. E., Peterson, B. M., & Turnshek,

D. A. 1979, ApJ, 234, 33

Wise, J. H., Eracleous, M., Charlton, J. C., & Ganguly, R. 2004,
ApJ, 613, 129

Young, P. J., Sargent, W. L. W., Boksenberg, A., Carswell, R. F.,
& Whelan, J. A. J., 1979, ApJ, 229, 891



10 Misawa et al.

TABLE 1
Log of Observations

Target Obs Date Instrument R Texp S/Na Referenceb

(sec) (pix−1)

SDSS J1029+2623 A 2010 Feb 10 Subaru/HDS 30000 14400 13 1
2014 Jan 28 – Feb 3 VLT/UVES 33000 26670 23 2

2014 Apr 4 Subaru/HDS 36000 11400 14 3
SDSS J1029+2623 B 2010 Feb 10 Subaru/HDS 30000 14200 13 1

2014 Feb 4 – 26 VLT/UVES 33000 26670 23 2
2014 Apr 4 Subaru/HDS 36000 11400 14 3

a Signal to noise ratio at λobs ∼ 4700Å.
b References. (1) Misawa et al. 2013, (2) This paper, (3) Misawa et al. 2014b.
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(Å
)

(Å
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TABLE 4
Statistical Properties of Poisson Systems of NALs

C IV N V Si IV

AALa non-AALb total AALa non-AALb total AALa non-AALb total

Path length δzc 0.05 0.56 0.61 0.05 0.01 0.07 0.05 0.37 0.42
δβc 0.02 0.19 0.21 0.02 0.00 0.02 0.02 0.12 0.14

Image A Nd 3+2.9
−1.6 9+4.1

−2.9 12+4.6
−3.4 2+2.6

−1.3 0+1.8
−0 2+2.6

−1.3 0+1.8
−0 3+2.9

−1.6 3+2.9
−1.6

dN/dz 57+55
−31 16+7.3

−5.3 20+7.4
−5.6 38+50

−24 0+132
−0 30+39

−19 0+35
−0 8.1+7.9

−4.4 7.1+6.9
−3.9

dN/dβ 177+172
−96 47+22

−16 58+22
−17 118+155

−76 0+409
−0 93+123

−60 0+108
−0 25+24

−14 22+21
−12

Image B Nd 3+2.9
−1.6 8+4.0

−2.8 11+4.4
−3.3 2+2.6

−1.3 0+1.8
−0 2+2.6

−1.3 0+1.8
−0 3+2.9

−1.6 3+2.9
−1.6

dN/dz 57+55
−31 14+7.1

−4.9 18+7.2
−5.3 38+50

−24 0+132
−0 30+39

−19 0+35
−0 8.1+7.9

−4.4 7.1+6.9
−3.9

dN/dβ 177+172
−96 42+21

−15 53+21
−16 118+155

−76 0+409
−0 93+123

−60 0+108
−0 25+24

−14 22+21
−12

M07ae dN/dz 14. 6.6 6.9 5.2 0.0 4.6 3.2 3.7 3.7
dN/dβ 54. 24. 25. 21. 0.0 18. 13. 14. 14.

a Associated absorption lines with vej ≤ 5000 km s−1 from the quasar emission redshift.
b Non-associated absorption lines with vej > 5000 km s−1 from the quasar emission redshift.
c Total redshift and speed intervals considered in the determination of dN/dz and dN/dβ.
d Number of Poisson systems (i.e., groups of NALs that lie within 200 km s−1 of each other).
e dN/dz and dN/dβ values from Misawa et al. (2007a).

TABLE 5
Properties of PALs and intrinsic NALs

PALa PALb NAL referencec

(broad) (narrow)

Absorber’s Transverse Sized ≥ rθ ≤ rθ ≤ rθ 1
Ionization Conditione high high low – high 1, 2, 3
Radial Velocityf (vej) small small large 1

Rotational Velocityg (vrot) large large small 7, 8, 9
Variability frequently frequently very rareh 4, 5, 6

Origin of Variability ionization condition gas motion gas motion (if any) 5
Covering Factor (Cf) ∼ 1 < 1 < 1 1

Background flux source BELR BELR continuum source 1

a PALs at vej > 0 km s−1 with common absorption profiles in both sightlines.
b PALs at vej < 0 km s−1 with sightline variation.
c References. (1) This paper, (2) Misawa et al. (2007a), (3) Ganguly et al. (2013) (4) Wise et al.
(2004), (5) Misawa et al. (2014a), (6) Chen et al. (2015), (7) Murray et al. (1995), (8) Misawa et al.
(2005), (9) Hall et al. (2011)
d This depends on whether sightline difference is observed (i.e., ≤ rθ) or not (i.e., ≥ rθ).
e Low, intermediate, and high ionization transitions are defined in Section 4.1.3.
f Ejection velocity assuming zem = 2.197.
g Absorbers with small orbital radius tend to have larger rotational velocity (see Section 5.3).
h Variation probability is very low for high ejection velocity NALs (Chen et al. 2015), although we
confirmed this trend only for a few strong C IV NALs.
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Fig. 1.— Normalized spectra and their 1σ errors for images A and B of SDSS J1029+2623, taken with VLT/UVES, after sampling every
0.5Å for display purpose only.
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Fig. 1.— Continued.
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Fig. 1.— Continued.
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Fig. 2.— Signal-to-Noise (S/N) ratio of the image A and B spectra (blue histograms) and the minimum S/N ratio that is necessary for
detecting homogeneous sample lines for N V, C IV, and Si IV, respectively (red lines from top to bottom; see Section 3.1).
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Fig. 3.— Results of partial coverage analysis applied to all C IV, N V, Si IV, and Mg II NALs detected in images A and B of
SDSS J1029+2623, except for the PALs whose results are presented in Figure 12. The horizontal axis denotes the relative velocity from
the flux-weighted center of the system (∆v) while the vertical axis is the normalized flux. The first two panels show the profiles of the
blue and red members of a doublet (blue and red histograms) with the model profile produced by minfit superposed (dashed line). The
positions of the narrow components are marked with upward arrows in the bottom of each panel. The bottom panel shows the covering
factors with their 1σ error bars, measured for each narrow component by minfit (green circles) or for each pixel (black dots). If we had to
assume Cf = 1 for some components because of unphysical Cf values derived from minfit (see Section 3.2), we do not plot them.
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Fig. 4.— Ejection velocity distribution of class-A (red line), B (blue line), and C (black line) NALs and PALs along the sightlines to the
images A and B. All Mg II NALs are located outside of the range of the velocity plot. Each of the red lines at vej ∼ 0 km s−1 surrounded
by a solid rectangle includes both C IV and N V PALs, respectively. Three clustering regions are surrounded by dotted rectangles.

Fig. 5.— Distribution of velocity offset (∆v) between PALs (red histogram) and class-A/B NALs (blue histogram) in the two different
images (image A and B) that match each other within ∆v ≤ 200 km s−1, as discussed in Section 4.1.4.
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Fig. 6.— Comparison of spectra and their 1σ errors around C IV NALs at zabs ∼ 1.8909 (upper left), 2.1349 (upper right), 2.1819 (lower
left) and Si IV NAL at zabs ∼ 1.8909 (lower right) in image A (blue histogram) and B (red histogram) spectra for systems that have a
small relative velocity between the images.

Fig. 7.— Same as Figure 6 but for class-A C IV NALs at zabs ∼ 1.7652 in image A (blue histogram) and at zabs ∼ 1.7650 in image B
(red histogram). The latter corresponds to the system center (∆v = 0 km s−1) in this plot.
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Fig. 8.— Comparison of C IV NALs at zabs = 1.7652 in image A (top panel) and at zabs = 1.7650 in image B (bottom panel). Black,
red, and blue histograms denote spectra in epoch E1, E2, and E3, respectively. The positions of blue and red member of the doublet are
marked with down arrows and vertical dashed lines. A strong feature at λ ∼ 4284 Å in the bottom panel is C IV 1551 at zabs = 1.7627.
Regions at λ ≤ 4281 Å are not covered by the Subaru/HDS spectra in epochs E1 and E3 because they are located at the edge of the CCD.

Fig. 9.— Comparison of spectra and their averaged 1σ errors around C IV NALs at zabs ∼ 1.8909–1.8982 in image A (upper left),
1.9115–1.9138 in image A (upper right), 1.8909–1.9019 in image B (lower left) and 1.9119 in image B (lower right) taken in epoch E1 (black
histogram), E2 (red histogram), and E3 (blue histogram).
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Fig. 10.— Comparison of normalized spectra around Lyα, Si IV, C IV, N V, and O VI PALs detected in the images A (blue) and B (red).
The horizontal axis is the offset velocity from the quasar emission redshift, and the vertical axis is the normalized flux. The histograms
above the zero flux line are 1σ flux errors. Due to heavy blending with other lines at lower redshift the existence of the Si IV doublet may
not be present. The O VI 1032 locate at the edge of the observed spectrum. Absorption features at vej < 0 km s−1 in the shaded areas

are narrow PALs, while the other features at vej > 0 km s−1 are broad PALs.

Fig. 11.— Comparison of C IV, N V, and Lyα PALs at zabs ∼ zem in images A and B, taken in epochs E1 (black), E2 (red), and E3
(blue). These spectra are scaled to each other by applying a least-square method for unabsorbed wavelength regions at both sides of the
PALs. The vertical axis denotes an arbitrary flux because we did not perform absolute flux calibration without flux standard stars. The
gray histograms above the zero flux line are 1σ flux error after taking averages of those in three observing epochs. Double-headed arrows
in the bottom of the first two panels mark the velocity ranges of the blue and red members of the C IV and N V doublets.
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Fig. 12.— Same figures as Figure 3, but for C IV and N V PALs at zabs ∼ zem. We adopt z = 2.1927 as a system center only for the
purpose of displaying these velocity plots. Because C IV PALs are self-blended, we fit the profiles of the blue and red members of the
doublet simultaneously by multiplying the contributions from them (Misawa et al. 2007b). Spectral regions in the top two panels, for which
the profiles of the blue and red members of a doublet (blue and red histograms) and the model profile (dashed line) do not match, suffer
from self-blending.
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Fig. 13.— Possible geometry of the outflowing wind along our two sightlines toward the lensed quasar SDSS J1029+2623, based on our
observations in three epochs. The gray filled circle corresponds to the broad PAL absorber with the minimum acceptable size, while blue
and red filled circles are C IV and N V absorbing regions in clumpy clouds as candidates for narrow PAL absorber and intrinsic NALs. The
boundary radius of the continuum source (3.5 pc) and BELR (1200 pc) are marked with dashed lines. The NAL absorber’s distance is not
necessarily larger than 1200 pc, although it is at least larger than the distance of the PAL absorbers. We adopt 14.′′6 as the separation
angle between two sightlines seen from the source, while Misawa et al. (2013, 2014b) used 22.′′5 assuming it is very similar to that seen
from us. See Section 5.3 for details.


