Intrinsic thermal management capability of elastic layer-structured metal-organic framework-11 exhibiting multi-gate adsorption for CO₂

Hideki Tanaka, Shotaro Hiraide, Narutomo Ishikawa and Minoru T. Miyahara

Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan Email:tanaka@cheme.kyoto-u.ac.jp

We show that flexible metal-organic frameworks (MOFs) exhibiting 'multi-gate openings/closings' for CO₂ can intrinsically suppress the exothermic heat released by adsorption and the endothermic heat gained by desorption, both of which result in the reduction of the working capacity of CO_2 in a separation process.¹ We use the elastic layer-structured metal-organic framework-11 (ELM-11) [Cu(4,4'-bipyridine)₂(BF₄)₂],²⁻⁶ which exhibits a two-step gate adsorp-tion isotherm, as a model system for flexible MOFs, and perform free energy analyses with the aid of grand canonical Monte Carlo simulations for ELM-11 structures that were determined by the Rietveld method using in-situ synchrotron X-ray powder diffraction data. We demonstrate that the thermal management capabilities of ELM-11 for gate-closings at lower and higher pressure during the desorption process are nearly identical and quite effective (38% and 35%, respectively). Moreover, we also show that the intrinsic thermal management of the adsorption process can work as well as it does for the desorption process, which suggests that flexible MOFs exhibiting multi-gate openings/closings are promising materials for further development into systems with intrinsic thermal management mechanisms for carbon capture and storage applications.

Fig. 1 Crystal structures of ELM-11 with different CO_2 loadings at 195 K: (a) after evacuation, (b) after 1st gate adsorption encapsulating 2CO₂, (c) after 2nd gate adsorption encapsulating 6CO₂.

References

- 1. S. Hiraide, H. Tanaka, N. Ishikawa and M. T. Miyahara, J. Am. Chem. Soc., submitted.
- 2. D. Li and K. Kaneko, Chem. Phys. Lett. 335, 50-56 (2001).
- 3. A. Kondo, H. Noguchi, S. Ohnishi, H. Kajiro, A. Tohdoh, Y. Hattori, W.-C. Xu, H. Tanaka, H. Kanoh and K. Kaneko, *Nano Lett.* **6**, 2581-2584 (2006).
- 4. H. Tanaka, S. Hiraide, A. Kondo and M. T. Miyahara, J. Phys. Chem. C 119, 11533-11543 (2015).
- 5. S. Hiraide, H. Tanaka and M. T. Miyahara, Dalton Trans. 45, 4193-4202 (2016).
- 6. M. Ichikawa, A. Kondo, H. Noguchi, N. Kojima, T. Ohba, H. Kajiro, Y. Hattori and H. Kanoh, *Langmuir* **32**, 9722-9726 (2016).