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1 はじめに
インターネットやモバイル通信は急速な発展を遂げ，日本だけでなく，世界中で生活インフ
ラの基盤となっている．さらなる進展に伴い，通信の高速化，大容量化，高信頼化などの需要
に応えるべく進歩を続ける技術の一つに通信システムがあげられる．通信システムとは符号語
の送受信によって情報を伝えるシステムであり，目的によって二つの符号化に分けられる．一
つ目が情報をより効率良く符号化し，小さいデータで情報を送る情報源符号化である．二つ目
が誤りをできるだけ小さくし，通信の信頼性の向上を達成する通信路符号化である．
本研究では通信路符号化の問題を考える．通信路符号化問題では情報の送り手と受け手の存
在を前提とし，送り手が送ったメッセージを受け手が正しく受け取るために必要な伝送レート
や復号誤り確率を求める．そのように通信をする際，すなわち，符号シンボルが通信路を通る
際，一般にコストがかかる．具体的には，信号を送信するための電力や受信までの時間がコス
トとされ，かかるコストは形式的にはコスト関数によって表される．その上で，符号シンボル
の通信コストに上限を設け，その制約内での最適な符号化，および，符号化定理を求める問題
をコスト制約付き通信路符号化問題と呼ぶ．コスト付き符号化問題は符号語長のコストへの単
なる一般化になっているだけでなく，情報源符号化の周辺の種々の問題に登場することが分
かっている [2]．また，雑音のある通信路の符号化や符号化定理も先行研究により解明されて
おり [1]，雑音のない通信路においてもコスト付き符号化問題として定理が示されている [2]．
本研究ではこの雑音のない一般通信路に対し，情報スペクトル的方法を用いて通信路容量を
導出した．具体的には，4つの復号誤り評価基準と 2つのコスト制約基準を考え，8つの組み
合わせすべてについて，容量が「コスト制約を満たす入力列集合の指数レート」で表されるこ
とを示した．雑音がない場合は雑音がある場合の特別な場合なので，成立する定理自体は自明
であるが，雑音がないという特殊性を活かし，雑音がある場合の一般定理とは独立に直接的な
順・逆定理を証明した．本研究の成果は，雑音がないという特殊な状況における固有の構成的
理解を深め，コスト制約下での符号設計に対する統一的な視点を提供する．

2 先行研究
はじめに本研究の先行研究となる様々な条件における符号化について復習する．本論文で扱
う底の明記されていない対数は自然対数である．
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2.1 定常無記憶情報源のコスト付き固定長符号化
本研究で扱うのは通信路符号化の問題であるが，雑音のない通信路では誤り訂正の必要がな
いため，問題の核心は情報源符号化と同様の符号語の効率的な構成へと集約される．よってこ
の節では，コスト付き情報源符号化に関してすでに知られていることを確認する．
定常無記憶情報源とは X1,X2,· · · が独立で同一の分布に従うような確率過程 (X1,X2,· · · )
のことである．各 n = 1, 2, · · · に対して，整数の集合Mn = {1, 2, · · · ,Mn}を定めておく，
長さ nの情報源系列 x ∈ Xn を集合Mn のいずれかの要素に変換する操作を符号化といい，
この変換を表す写像 φn : Xn → Mn を符号化関数という．ここで，φn(x)は xの符号語と呼
ばれる．次に，符号語m = φn(x)を受け取った受信者はこれからもとの情報源系列 xを復元
しようとする．この操作を復号化といい，この変換を表す写像 ψn : Mn → Xn を復号化関数
という．ここで復号された結果は必ずしも元の情報源系列に一致しなくともよい．そのとき長
さ nの情報源系列を確率変数 Xn = (X1, · · · , Xn)とおき

εn ≜ Pr{Xn ̸= ψn(φn(X
n))} (1)

を誤り確率と呼ぶ．復号誤りが起こると精度の高い通信ではなくなるため，誤り確率 εn は小
さければ小さいほどよいが，そのためには符号語数Mn がある程度大きくなければならない．
しかし，Mn は符号長 nの増大に伴って指数関数的に増大するため，その値自体では圧縮の効
率を適切に評価することが困難である．そこで，Mn の大きさを定量的に表す量を定義する必
要が生じる．それを表す量として

rn ≜ 1

n
logMn (2)

を考え符号化レートと呼ぶ [1]．この符号化レートが小さければ小さいほど通信効率が良くな
り，高速な通信が可能になるが，すると誤り確率が大きくなってしまうという相反関係にある．
ここにさらに，コストの概念を導入する．まず符号化に用いるアルファベットを A =

{a1, a2, · · · , ar} とし，各記号 a ∈ A に対して，その記号を使用する際にかかるコストを
c(a) > 0 と定義する．このとき，長さ n の符号系列 a = a1a2 · · · an ∈ A∗ に対するコスト
c(a)は，各記号のコストの総和として

c(a) =

n∑
i=1

c(ai) (3)

により与えられる．ここで，コスト t = c(a)で送信可能な系列の総数を N(t)によって表し，
単位コストあたりに送信できるビット数をコスト容量とし，

αc ≜ lim
t→∞

log2N(t)

t
(4)
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と定義する．定常無記憶情報源がエントロピー H を有するとき，任意の ε > 0に対し，単位
記号当たりの平均コストが H/αc + ε以下になるように情報源系列を符号化することが可能で
ある．また逆に，単位記号当たりの平均コストをH/αc より真に小さくなるように情報源系列
を符号化することは不可能である [2]．

2.2 定常無記憶通信路の符号化
この節ではコスト制約付き通信路符号化問題の基本について確認する．まず，定常無記憶
通信路における符号化について述べる．通信路の入出力アルファベットをそれぞれ X ,Y とす
る．通信路は条件付き確率の組 {W (y|x)}x∈X ,y∈Y によって表される．すなわち∑

y∈Y
W (y | x) = 1 (∀x ∈ X ) (5)

を満たす．
入力系列

x = (x1, x2, · · · , xn) ∈ Xn (6)

が与えられたとき出力系列

y = (y1, y2, · · · , yn) ∈ Yn (7)

の出現する条件付確率Wn(y|x)が

Wn(y|x) =
n∏

i=1

W (yi|xi) (8)

で与えられる通信路のことを定常無記憶通信路と呼ぶ．伝送すべきメッセージの集合をMn =

{1, 2, · · · ,Mn}としたとき，それらを長さ nの通信路入力に変換する写像 φn : Mn → Xn を
符号化関数と呼ぶ．ここで通信路の受信側では，あらかじめ定めておいた Yn の分割

Yn = ψ−1
n (1) ∪ · · · ∪ ψ−1

n (Mn) (ψ−1
n (i) ∩ ψ−1

n (j) = ∅ for i ̸= j) (9)

に基づいて，受信語 y が y ∈ ψ−1
n (m)ならばm ∈ Mn が送信されてきたものと判定する．こ

こで，

rn =
1

n
logMn (10)

は通信路 1回当りの伝送情報量を表し符号化レートと呼ばれる．また，通信路符号化における
復号の誤り確率 εn は

εn ≜ 1

Mn

Mn∑
m=1

Wn(ψ−1
n (m)c|φn(m)) (11)
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と定義される．通信路符号化問題は通常，誤り確率を漸近的にゼロにするような符号器と復号
器の組が存在するという条件のもとで符号化レートを最大限どこまで大きく出来るかという形
に定式化される．そこで次のように定義する．
定義 1 任意の非負実数 Rに対し，レート Rが達成可能とは

lim
n→∞

εn = 0 (12)

lim inf
n→∞

1

n
logMn ≥ R (13)

を満たすような符号の列 {(φn, ψn)}∞n=1 が存在することである．
定義 2 (通信路容量)

C(W ) ≜ sup{R | Rが達成可能 }. (14)

確率変数 X,Y に対して I(X;Y )を

I(X;Y ) ≜
∑
x∈X

∑
y∈Y

PX(x)W (y|x) log W (y|x)
PY (y)

(15)

と定義し，X と Y の間の相互情報量と呼ぶ．ここでW (y|x)は X = xが与えられたときの
Y = y の条件付確率を表す．すると相互情報量を用いて，通信路容量は
定理 1

C(W ) = sup
X
I(X;Y ) (16)

で与えられる [1]．ここで supX は入力アルファベット X の中に値を取るすべての確率変数X

にわたる上限を表す．

2.3 一般通信路の符号化
次に，通信路を定常無記憶とは限らない一般の通信路に拡張したときの符号化を考える．そ
のために一般の通信路を次のように定義する．すなわち，Wn を各 n = 1, 2, · · · に対して∑

y∈Yn

Wn(y|x) = 1 (∀x ∈ Xn) (17)

を満たすものとする．それらの系列W = {Wn}∞n=1 を一般通信路と呼ぶ．ここで一般に，実
数値確率変数列 {Zn}∞n=1 に対して

p- lim inf
n→∞

Zn ≜ sup

{
β

∣∣∣∣ limn→∞
Pr{Zn ≤ β} = 0

}
(18)
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を定義する．これを {Zn}∞n=1 の確率的下極限という．
確率的下極限を用いて，通信路の入出力 X, Y に対して

I(X;Y ) ≜ p- lim inf
n→∞

1

n
log

Wn(Y n|Xn)

PY n(Y n)
(19)

を定義し，これを相互情報量スペクトル下限と呼ぶ．
定理 2 任意の通信路W に対して，その通信路容量 C(W )は

C(W ) = sup
X

I(X;Y ) (20)

で与えられる [1]．ここで supX はすべての入力過程X にわたる上限を表す．

2.4 一般通信路のコスト制約付き符号化
ここにさらにコストの概念を導入する．一般に，n = 1, 2, · · · に対して，写像 cn : Xn → R
が与えられているとし，

c = {cn}∞n=1 (21)

とおく．ただし，Rは実数全体の集合を表す．このとき，x ∈ Xn に対して cn(x)を xのコス
トと呼ぶ．そのもとで，すべての n = 1, 2, · · · に対してすべての符号語が

1

n
cn(φn(m)) ≤ Γ (m = 1, 2, · · · ,Mn) (22)

を満たすような符号を考える．ただし，Γは与えられた定数であり，この形の条件をコスト制
約 Γと呼ぶ．
コスト制約付きの通信路符号化問題はコスト制約のない通信路符号化問題と同様に定義でき
る．
定義 3 非負実数 R,Γに対し，レート Rが Γ-達成可能とは

lim
n→∞

εn = 0 (23)

lim inf
n→∞

1

n
logMn ≥ R (24)

1

n
cn(φn(m)) ≤ Γ (∀n ∈ N,m = 1, 2, · · · ,Mn) (25)

を満たすような符号の列 {(φn, ψn)}∞n=1 が存在することである．
定義 4 Γに対して

Cs(Γ|W ) ≜ sup{R|RがΓ-達成可能 } (26)
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を Γ-通信路容量と呼ぶ．
Γ-通信路容量の数学的表現のため，Xn

≤Γ を

Xn
≤Γ ≜

{
x ∈ Xn

∣∣∣∣ 1ncn(x) ≤ Γ

}
(27)

と定義し，すべての n = 1, 2, · · · に対して

Pr{Xn ∈ Xn
≤Γ} = 1 (28)

を満たす入力過程X = {Xn}∞n=1 の全体を SΓ で表すと，定理 2に対応する次の定理を得る．
定理 3　通信路W の Γ-通信路容量 Cs(Γ|W )は

Cs(Γ|W ) = sup
X∈SΓ

I(X;Y ) (29)

で与えられる [1]．ただし，Y はX を入力過程とする通信路W の出力過程を表す．

2.5 雑音のない一般通信路のコスト制約付き符号化
次に雑音のない一般通信路を考える．定理 3 は通信路に雑音がない場合も成り立つことか
ら，X = Y ならば，式 (19) は

I(X;X) = p- lim inf
n→∞

1

n
log

Wn(Xn|Xn)

PXn(Xn)
(30)

となり，ここで一般通信路の定義

Wn(y|x) ≜ Pr{Y n = y|Xn = x}　 (x ∈ X ,y ∈ Y) (31)

より

Wn(x|x) = Pr{Xn = x|Xn = x} (32)

= 1 (33)

となることから

I(X;X) = p- lim inf
n→∞

1

n
log

1

PXn(Xn)
(34)

であるが，ここで

H(X) ≜ p- lim inf
n→∞

1

n
log

1

PXn(Xn)
(35)

を用いて

I(X;X) = H(X) (36)
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と書き換えることができる．このことより，通信路に雑音がない場合，定理 4は次のように表
される．
定理 4

Cs(Γ|W ) = sup
X∈SΓ

H(X) (37)

この定理は，雑音のない一般通信路に対するコスト制約付き符号化問題のひとつの答えであ
る．本研究の主題は，この問題に対する他の設定のバリエーションも含めて，雑音がない特殊
性を利用して証明を構成することである．

3 各種コスト制約および誤り確率に基づく通信路容量
本論文の本題として，雑音のない一般通信路を考える．つまり，出力 Y は入力X に等しい．
しかし，符号器と復号器による誤りは許容する．従って，誤り確率 εn は

εn ≜ Pr{Xn ̸= ψn(φn(X
n))} (38)

と定義される．これは式 (11) におけるメッセージの一様分布を情報源分布 PXn に，通信路
Wn を出力が入力と等しい変換に置き換えた定義に相当する．
本研究では雑音のない一般通信路におけるコスト制約付き通信路容量を導出する．証明に入
る前に，本章で扱う 8つの問題設定を整理する．これらの設定は，誤り確率に関する 4つの基
準と，コスト制約に関する 2つの基準の組み合わせからなる．
誤り確率に関して，

(a) 誤りが全く許容されない設定　 εn = 0

(b) 符号語長 n→ ∞で誤り確率が 0に収束する設定　 limn→∞ εn = 0

(c) 誤り確率が常に ε以下に抑えられている設定　 εn ≤ ε

(d) n→ ∞での誤り確率の上極限が ε以下となる設定　 lim supn→∞ εn ≤ ε

の 4種類を考える．
コスト制約に関して，

(e) 送信する符号語に対して課されるコストを全ての符号語が例外なく制限 Γ を満たすこ
とを要求する厳密な制約　 Pr

{
1
ncn(φn(UMn

)) ≤ Γ

}
= 1

(f) 符号語長を大きくしたときに制約を満たす確率が 1に収束すればよいとする漸近的な制
約　 limn→∞ Pr

{
1
ncn(φn(UMn

)) ≤ Γ

}
= 1

の 2種類を考える．
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これらを網羅的に議論することで，通信の条件が異なる設定であっても，最終的な通信路容
量が単一の形式に帰着されるという，一般通信路における普遍的な性質を明らかにする．

3.1 誤りを許さない場合
本節で扱う復号誤りがゼロという設定下では，εn = 0 は自明であるため，本節における達
成可能の定義には，復号誤りに関する条件は含めない．

3.1.1 コスト制約を厳密に満たす
ここで，雑音のない通信路における Γ-達成可能を，以下のように定義する．
定義 5　非負実数 R,Γに対し，レート Rが Γ-達成可能とは

lim inf
n→∞

1

n
logMn ≥ R　 (39)

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (40)

を満たすような符号の列 {(φn, ψn)}∞n=1 が存在することである．
Γ-通信路容量は定義 5に従って定義するが，通信路に雑音がないので単に C(Γ)と表すこと
にする．
定理 5　 Γ-通信路容量 C(Γ)は

C(Γ) = lim inf
n→∞

1

n
log |Xn

≤Γ| (41)

で与えられる．
本定理は，コスト容量の式 (4) と極めて類似した形式を有している．これは両者が，制約を
満たす系列数の増大率を容量の本質として捉えているためである．具体的には，式 (4)におけ
る総コスト tの役割をブロック長 nが担う形へと整理されており，コスト制約を独立した変数
として扱うことでより汎用的な解析を可能にしている．したがって，これら 2つの式は異なる
制約条件下において同一の理論構造を共有する形式であるといえる．
以下では通信路に雑音がないことを使って定理 4の証明をする．

〔証明〕
1）Direct part:

Xn
≤Γ の要素をすべて符号語として符号を設計する．すると符号語数は Mn = |Xn

≤Γ| となり

R ≜ lim inf
n→∞

1

n
log |Xn

≤Γ| = lim inf
n→∞

1

n
logMn (42)

は式 (39) を満たす．一方符号語のコストは式 (27)より

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (43)
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となり，式 (40)を満たす．したがって R は Γ-達成可能であり

C(Γ) ≥ R = lim inf
n→∞

1

n
log |Xn

≤Γ| (44)

となる．
2）Converse part:

背理法によって

C(Γ) ≤ lim inf
n→∞

1

n
log |Xn

≤Γ| (45)

を示す．まず

R > lim inf
n→∞

1

n
log |Xn

≤Γ| (46)

が Γ-達成可能であると仮定する．そのもとでまず，

R− 2γ > lim inf
n→∞

1

n
log |Xn

≤Γ| (47)

なる γ > 0をとる．
Rが Γ-達成可能であるから，

lim inf
n→∞

1

n
logMn ≥ R (48)

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (49)

なる符号の列 {(φn, ψn)}∞n=1 が存在することになる．
ここで式 (48)より

lim inf
n→∞

1

n
logMn ≥ R > R− 2γ > lim inf

n→∞

1

n
log |Xn

≤Γ| (50)

となる．このことから，十分大きなすべての nで
1

n
logMn > R− γ (51)

かつ，無限個の nで
1

n
log |Xn

≤Γ| < R− γ (52)

である．よって，無限個の nで
1

n
log |Xn

≤Γ| <
1

n
logMn (53)

∴ |Xn
≤Γ| < Mn (54)
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となる．これは符号語の中に
1

n
cn(φn(m)) > Γ (55)

なるものがあることを意味する．したがってこれは式 (49)に矛盾する．したがって式 (46) な
る Rは達成可能ではない． □

3.1.2 コスト制約を漸近的に満たす
ここでコスト制約が漸近的な場合を考える．
定義 6　非負実数 R,Γに対し，レート Rが Γ-達成可能とは

lim inf
n→∞

1

n
logMn ≥ R　 (56)

lim
n→∞

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (57)

を満たすような符号の列 {(φn, ψn)}∞n=1 が存在することである．
定理 6　 Γ-通信路容量 C(Γ)は

C(Γ) = lim inf
n→∞

1

n
log |Xn

≤Γ| (58)

で与えられる．
〔証明〕
1）Direct part:

Xn
≤Γ の要素をすべて符号語として符号を設計する．すると，定理 5と同様に順定理の証明

が可能である．
2）Converse part:

定理 5の逆定理と同様に背理法によって

C(Γ) ≤ lim inf
n→∞

1

n
log |Xn

≤Γ| (59)

を示す．そこで

R > lim inf
n→∞

1

n
log |Xn

≤Γ| (60)

が Γ-達成可能であるとして矛盾を導く．まず，

R− 2γ > lim inf
n→∞

1

n
log |Xn

≤Γ| (61)

なる γ > 0をとる．ここで，定理 5の証明における式 (48)～(51)と同様の議論が成立し，無
限個の n で

1

n
log |Xn

≤Γ| < R− γ (62)
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となることから，無限個の nで
1

n
log |Xn

≤Γ|+ γ <
1

n
logMn (63)

∴ |Xn
≤Γ| · enγ < Mn (64)

が成り立つ．一方，Mn 個の符号語のうち，制約を満たすものは高々 |Xn
≤Γ|個であり，残りの

少なくともMn − |X n
≤Γ|個の符号語は制約を満たさない．したがって

Pr

{
1

n
cn(φn(UMn

)) > Γ

}
≥ 1

Mn
(Mn − |X n

≤Γ|) (65)

= 1−
|Xn

≤Γ|
Mn

(66)

> 1− Mn · e−nγ

Mn
(67)

= 1− e−nγ (68)

が無限個の nで成り立っている．よって

lim sup
n→∞

Pr

{
1

n
cn(φn(UMn)) > Γ

}
= 1 (69)

となり，これは式 (57)に矛盾する． □

3.2 誤り確率が漸近的にゼロになればよい場合
本節では漸近的に誤りがゼロとなる設定へと移行する．これに従い，達成可能の定義には復
号誤りに関する条件を明示的に加える．

3.2.1 コスト制約を厳密に満たす
雑音のない通信路における Γ-達成可能を以下のように定義する．
定義 7　非負実数 R,Γに対し，レート Rが Γ-達成可能とは

lim
n→∞

εn = 0 (70)

lim inf
n→∞

1

n
logMn ≥ R (71)

Pr

{
1

n
cn(φn(UMn)) ≤ Γ

}
= 1 (72)

を満たすような符号の列 {(φn, ψn)}∞n=1 が存在することである．
以下の定理が得られる．
定理 7　 Γ-通信路容量 C(Γ)は

C(Γ) = sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (73)

11



で与えられる．
この定理は 2.5節で述べたものと同一である．以下では通信路に雑音がないことを使って定
理 6の証明をする．
〔証明〕
1）Direct part:

まず，すべての nに対して

Pr

{
1

n
cn(X

n) ≤ Γ

}
= 1 (74)

であるような任意の情報源X を考える．次にこのX に対して，

R < H(X) (75)

なる任意の Rを考える．このとき，ある γ > 0に対して，

R = H(X)− 2γ (76)

が成り立つ．この Rが Γ-達成可能であることを示す．準備として

Tn ≜
{
x ∈ Xn

∣∣∣∣ 1n log
1

PXn(x)
> H(X)− γ

}
(77)

を定める．Mn ≜ enR = eH(X)−2γ とおき，φ̄n(1), φ̄n(2), · · · , φ̄n(Mn) ∈ Xn を互いに独立
に分布 PXn に従って発生させる．この φ̄n が符号器となる．次に復号器を定める．復号器 ψ̄n

は x ∈ Xn を受け取ったとき，

φ̄n(m) = x (78)

となるような m ∈ Mn がただ一つのとき，ψ̄n(x) = m とし，それ以外は誤りとみなす．
m ∈ Mnが正しく伝わるためには受信語 φ̄n(m)がどのm′ ̸= mに対しても φ̄n(m

′) ̸= φ̄n(m)

であればよい．ここで，事象 E(m)を

E(m) ≜ {あるm′ ̸= mに対してφ̄n(m
′) = φ̄n(m)} (79)

と定める．すると，メッセージmを送信したときの復号誤り確率 ε̄n(m)は

ε̄n(m) = Pr{E(m)} (80)

= Pr{E(m)かつφ̄n(m) /∈ Tn}+ Pr{E(m)かつφ̄n(m) ∈ Tn} (81)

と表される．

12



ここで第 2項は

Pr{E(m)かつφ̄n(m) ∈ Tn} (82)

= Pr{{あるm′ ̸= mに対してφ̄n(m
′) = φ̄n(m)}かつφ̄n(m) ∈ Tn} (83)

= Pr{あるm′ ̸= mに対して {φ̄n(m
′) = φ̄n(m)かつφ̄n(m) ∈ Tn}} (84)

= Pr

{ ⋃
m′ ̸=m

{φ̄n(m
′) = φ̄n(m)かつφ̄n(m) ∈ Tn}

}
(85)

　 ≤
∑

m′ ̸=m

Pr{φ̄n(m
′) = φ̄n(m)かつφ̄n(m) ∈ Tn} (86)

であり，和の中は

Pr{φ̄n(m
′) = φ̄n(m)かつφ̄n(m) ∈ Tn} (87)

=
∑
x

Pr{φ̄n(m
′) = φ̄n(m)かつφ̄n(m) ∈ Tnかつφ̄n(m) = x} (88)

=
∑
x

Pr{φ̄n(m
′) = x} · Pr{φ̄n(m) ∈ Tnかつφ̄n(m) = x} (89)

=
∑
x

Pr{Xn = x} · Pr{Xn ∈ Tnかつ Xn = x} (90)

=
∑
x

PXn(x) · Pr{x ∈ Tnかつ Xn = x} (91)

=
∑
x

PXn(x) · Pr{Xn = x} · 1{x ∈ Tn} (92)

=
∑
x∈Tn

PXn(x) · PXn(x) (93)

と書き換えることができる．そこで，x ∈ Tn より，
1

n
log

1

PXn(x)
> H(X)− γ (94)

log
1

PXn(x)
> n(H(X)− γ) (95)

1

PXn(x)
> en(H(X)−γ) (96)

PXn(x) < e−n(H(X)−γ) (97)

であり，これを式 (93)に代入すると，∑
x∈Tn

PXn(x) · PXn(x) <
∑
x∈Tn

PXn(x) · e−n(H(X)−γ) (98)

≤ 1 · e−n(H(X)−γ) (99)
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となる．これにより式 (81)は

ε̄n(m) ≤ Pr{φ̄n(m) /∈ Tn}+
∑

m′ ̸=m

e−n(H(X)−γ) (100)

= Pr{Xn /∈ Tn}+ (Mn − 1)e−n(H(X)−γ) (101)

< Pr{Xn /∈ Tn}+Mne
−n(H(X)−γ) (102)

= Pr{Xn /∈ Tn}+ en(H(X)−2γ)−n(H(X)−γ) (103)

= Pr{Xn /∈ Tn}+ e−nγ (104)

となる．ここで ε̄n(m)はm ∈ Mn に依存しない値で上から押さえられるため，平均復号誤り
確率 ε̄n は

lim
n→∞

ε̄n = lim
n→∞

1

Mn

Mn∑
m=1

ε̄n(m) (105)

≤ lim
n→∞

(Pr{Xn /∈ Tn}+ e−nγ) (106)

= 0 (107)

となる．ただし式 (107)では大数の法則 [1]を用いた．
ところが，̄εnはランダム符号のすべてにわたる平均値であったので，誤り確率 εnが εn ≤ ε̄n

となるようなランダムでない符号 (φn, ψn)が少なくとも 1つ存在する．
ここで (φn, ψn)の符号化レートは

1

n
logMn =

1

n
log enR (108)

= R (109)

である．一方符号語のコストは

Pr

{
1

n
cn(φ̄n(UMn

)) ≤ Γ

}
=

Mn∑
m=1

Pr

{
1

n
cn(φ̄n(UMn

)) ≤ Γ, UMn
= m

}
(110)

=

Mn∑
m=1

Pr

{
1

n
cn(φ̄n(m)) ≤ Γ, UMn

= m

}
(111)

=

Mn∑
m=1

Pr

{
1

n
cn(φ̄n(m)) ≤ Γ

}
· Pr{UMn

= m} (112)

=
1

Mn

∑
m

Pr

{
1

n
cn(X

n) ≤ Γ

}
(113)

= 1 (114)

より，ここで発生させた符号は必ず式 (72)を満たす．ここで UM はM 以下の自然数上に一
様に分布する確率変数とする．
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式 (107)，式 (114)より，この符号 (φn, ψn)は

lim
n→∞

εn = 0 (115)

lim inf
n→∞

1

n
logMn ≥ R (116)

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (117)

を満たす．よってレート R は Γ-達成可能である．このことから，C(Γ) ≥ R = H(X) − 2γ

が成り立つが，X は式 (74)を満たす任意の情報源であったので，

C(Γ) ≥ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X)− 2γ (118)

が成り立つ．ここで γ > 0は任意だったことに注意すれば，

C(Γ) ≥ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (119)

が得られる．
2）Converse part:

背理法によって

C(Γ) ≤ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (120)

を示す．そこで

R = sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) + 3γ　 (121)

が Γ-達成可能であるとして矛盾を導く．ただし，γ > 0は任意に小さい定数である．
Rが Γ-達成可能であるから，

lim inf
n→∞

1

n
logMn ≥ R (122)

lim
n→∞

εn = 0　 (123)

Pr

{
1

n
cn(φn(UMn)) ≤ Γ

}
= 1 (124)

なる符号の列 {(φn, ψn)}∞n=1 が存在することになる．
そこで，Xn = φn(UMn

)とすれば，付録 Aにある補題 1により

εn ≥ Pr

{
1

n
log

1

PXn(Xn)
≤ 1

n
logMn − γ

}
− e−nγ (125)
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である．一方，式 (122)より

1

n
logMn ≥ R− γ (∀n ≥ n0) (126)

が得られ，これを式 (125)に代入すると

εn ≥ Pr

{
1

n
log

1

PXn(Xn)
≤ R− 2γ

}
− e−nγ　 (∀n ≥ n0) (127)

となる．ここで式 (121)より

R− 2γ = sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) + γ (128)

であるが，今考えている Xn = φn(UMn
) は式 (124)を満たすので

sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) + γ ≥ H(X) + γ (129)

となる．したがって式 (127)は

　εn ≥ Pr

{
1

n
log

1

PXn(Xn)
≤ H(X) + γ

}
− e−nγ (130)

となる．ここで H(X)の定義より

H(X) = p- lim inf
n→∞

1

n
log

1

PXn(Xn)
(131)

= sup

{
β
∣∣∣ lim
n→∞

Pr

{
1

n
log

1

PXn(Xn)
≤ β

}
= 0

}
(132)

である．したがって α = H(X) + γ を用いて

lim
n→∞

Pr

{
1

n
log

1

PXn(Xn)
≤ α

}
̸= 0 (133)

lim sup
n→∞

Pr

{
1

n
log

1

PXn(Xn)
≤ α

}
> ∃δ > 0 (134)

Pr

{
1

n
log

1

PXn(Xn)
≤ α

}
> δ > 0　 (∃n ≥ ∀n0) (135)

となることから式 (130)は

εn ≥ δ − e−nγ (136)

となる．つまり式 (136) となる n が可算無限個存在することから，εn → 0(n → ∞)

とはなれない．これは式 (123) に矛盾する．よって，達成可能なレート R は
supX:Pr{ 1

n cn(Xn)≤Γ}=1H(X)より大きくなれない． □
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3.2.2 コスト制約を漸近的に満たす
ここでコスト制約が漸近的な場合を考える．
定義 8　非負実数 R,Γに対し，レート Rが Γ-達成可能とは

lim
n→∞

εn = 0 (137)

lim inf
n→∞

1

n
logMn ≥ R (138)

lim
n→∞

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (139)

を満たすような符号の列 {(φn, ψn)}∞n=1 が存在することである．
定理 8　 Γ-通信路容量 C(Γ)は

C(Γ) = sup
X:limn→∞ Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (140)

で与えられる．
〔証明〕
1）Direct part:

まず，

lim
n→∞

Pr

{
1

n
cn(X

n) ≤ Γ

}
= 1 (141)

であるような任意の情報源X = {Xn}∞n=1 を考える．次にこのX に対して，

R < H(X) (142)

なる任意の Rを考える．このとき，ある γ > 0に対して，

R = H(X)− 2γ (143)

が成り立つ．この Rが Γ-達成可能であることを示す．準備として

Tn ≜
{
x ∈ Xn

∣∣∣∣ 1n log
1

PXn(x)
> H(X)− γ

}
(144)

を定める．Mn ≜ enR = eH(X)−2γ とおき，φ̄n(1), φ̄n(2), · · · , φ̄n(Mn) ∈ Xn を互いに独立
に分布 PXn に従って発生させる．
復号誤り確率 εn が 0に収束することは定理 7と同様に示すことができる．
次に符号語のコストを考える．Xn の分布を用いて X̄n の分布を

PX̄n(x) =

{
Pr{Xn = x|Xn ∈ Xn

≤Γ} (x ∈ Xn
≤Γ)

0 (x /∈ Xn
≤Γ)

(145)
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と定める．したがって∑
x

PX̄n(x) =
∑

x∈Xn
≤Γ

Pr{Xn = x|Xn ∈ Xn
≤Γ} (146)

=
∑

x∈Xn
≤Γ

Pr{Xn = xかつ Xn ∈ Xn
≤Γ}

{Xn ∈ Xn
≤Γ}

(147)

=
Pr{Xn ∈ Xn

≤Γ}
Pr{Xn ∈ Xn

≤Γ}
(148)

= 1 (149)

となる．ここで式 (144) と式 (145)を用いて

Pr{X̄n /∈ Tn} =
∑
x/∈Tn

PX̄n(x) (150)

=
∑

x∈Xn
≤Γ

⧹Tn

Pr{Xn = x|Xn ∈ Xn
≤Γ} (151)

=
∑

x∈Xn
≤Γ

⧹Tn

Pr{Xn = xかつ Xn ∈ Xn
≤Γ}

Pr{Xn ∈ Xn
≤Γ}

(152)

≤ 1

Pr{Xn ∈ Xn
≤Γ}

∑
x∈Xn

≤Γ
⧹Tn

PXn(x) (153)

≤ 1

Pr{Xn ∈ Xn
≤Γ}

∑
x/∈Tn

PXn(x) (154)

であり，式 (144)より

1

Pr{Xn ∈ Xn
≤Γ}

∑
x/∈Tn

PXn(x) =
1

Pr{Xn ∈ Xn
≤Γ}

Pr

{
1

n
log

1

PXn(x)
≤ H(X)− γ

}
(155)

→ 0 (156)

となり，コスト制約を満たす系列集合 Xn
≤Γ のみに制限した分布 PX̄n を用いても，典型集合

Tn から外れる確率は漸近的に 0 となる．したがって，式 (145) より，これに従って選ばれる
符号語 φ̄n はすべて Xn

≤Γ に属するため，任意の n に対して

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (157)

∴ lim
n→∞

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (158)

が成立する．したがって，符号語のコストは式 (139) を満たす．
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ここで (φn, ψn)の符号化レートは

1

n
logMn =

1

n
log enR (159)

= R (160)

であり，前節の式 (107)と同様に復号誤り確率 εn が 0に収束することと，式 (158)より，こ
の符号 (φn, ψn)は達成可能の条件式 (137)，(138)，(139)を満たす．よってレート Rは Γ-達
成可能である．このことから，C(Γ) ≥ R = H(X) − 2γ が成り立つが，X は式 (141)を満
たす任意の情報源であったので，

C(Γ) ≥ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X)− 2γ (161)

が成り立つ．ここで γ > 0は任意だったことに注意すれば，

C(Γ) ≥ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (162)

が得られる．
2）Converse part:

達成可能な符号が満たすべき制約と，通信路容量の式で sup を取る対象となる情報源の制
約が同様の対応関係にあるため，定理 7と同様に逆定理の証明が可能である． □

3.3 小さい誤り確率を許す場合
本節では，復号誤り確率に関する制約を εn ≤ εへと緩和した場合を考える．

3.3.1 コスト制約を厳密に満たす
ここでコスト制約が厳密な場合を考える．
定義 9　非負実数 R,Γに対し，レート Rが Γ-達成可能とは

εn ≤ ε (163)

lim inf
n→∞

1

n
logMn ≥ R (164)

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (165)

定理 9 Γ-通信路容量 C(Γ)は

C(Γ) = lim inf
n→∞

1

n
log |Xn

≤Γ| (166)

で与えられる．
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〔証明〕
1）Direct part:

はじめにM ′
n ≜ |Xn

≤Γ| とおき，Xn
≤Γ から符号語 φn(1), φn(2), · · · , φn(M

′
n) を重複なく選

び，誤りなく届くようにデコーダ ψn をつくる．
ここでメッセージを増やしてMn =

⌊M ′
n

1−ε

⌋個にし，増やしたメッセージに対する符号語は，
φn(1), φn(2), · · · , φn(M

′
n) に重複させる．増やしたメッセージは誤って復号される．ここで

復号誤り確率 εn は

εn =
Mn −M ′

n

Mn
(167)

= 1− M ′
n

Mn
(168)

≤ 1− M ′
n

M ′
n

1−ε

(169)

= ε (170)

より
εn ≤ ε (171)

となる．一方符号語はすべて Xn
≤Γ から選んだので

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (172)

となる．また符号化レートは
1

n
logMn ≥ 1

n
log

(
M ′

n

1− ε
− 1

)
(173)

=
1

n
log

(
M ′

n ×
(

1

1− ε
− 1

M ′
n

))
(174)

=
1

n
logM ′

n +
1

n
log

M ′
n − 1 + ε

(1− ε)M ′
n

(175)

となるが，n → ∞ において M ′
n → ∞ であることから，右辺の第 2項の中身は 1

1−ε という
正の定数に収束する．したがって，これに 1

n をかけた項は漸近的に 0 となることから，

lim inf
n→∞

1

n
logMn ≥ lim inf

n→∞

1

n
logM ′

n (176)

= lim inf
n→∞

1

n
log |Xn

≤Γ| (177)

であり，式 (171)，式 (172)，式 (177)より，lim inf 1
n log |Xn

≤Γ|は Γ-達成可能である．よって

C(Γ) ≥ lim inf
n→∞

1

n
log |Xn

≤Γ| (178)
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となる．
2）Converse part:

背理法によって C(Γ) ≤ lim infn→∞
1
n log |Xn

≤Γ|を示す．
そこで

R > lim inf
n→∞

1

n
log |Xn

≤Γ| (179)

が Γ-達成可能であるとして矛盾を導く．まず

R− 2γ > lim inf
n→∞

1

n
log |Xn

≤Γ| (180)

なる γ > 0をとる．ただし γ > 0は十分小さな定数である．Rが達成可能であるから

εn ≤ ε (181)

lim inf
n→∞

1

n
logMn ≥ R　 (182)

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (183)

なる符号の列 {(φn, ψn)}∞n=1 が存在することになる．ここで，式 (182)より，定理 6の式 (61)

～(62)と同様の議論を用いて無限個の nで
1

n
log |Xn

≤Γ|+ γ <
1

n
logMn (184)

となる．
一方，εn ≤ εより，正しく届くメッセージの個数をM ′

n とおくと

ε ≥εn (185)

=1− M ′
n

Mn
(186)

≥1−
|Xn

≤Γ|
Mn

(187)

∴ (1− ε)Mn ≤ |X n
≤Γ| (188)

1

n
logMn +

1

n
log(1− ε) ≤ 1

n
log |Xn

≤Γ| (189)

となる．ただし式 (187) では式 (183) より，使われている符号語はすべて制約を満たし，
M ′

n ≤ |X n
≤Γ|となることを用いた．

ここで γ に対して nが十分大きければ 1
n log(1− ε) > −γ であるので

1

n
logMn − γ ≤ 1

n
log |Xn

≤Γ| (190)

1

n
log |Xn

≤Γ|+ γ ≥ 1

n
logMn (191)
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となるが，これは式 (184)に矛盾する．よって，達成可能なレートRは lim infn→∞
1
n log |Xn

≤Γ|
より大きくなれない． □

3.3.2 コスト制約を漸近的に満たす
ここでコスト制約が漸近的な場合を考える．
定義 10　非負実数 R,Γに対し，レート Rが Γ-達成可能とは

εn ≤ ε (192)

lim inf
n→∞

1

n
logMn ≥ R (193)

lim
n→∞

Pr

{
1

n
cn(φn(UMn)) ≤ Γ

}
= 1 (194)

を満たすような符号の列 {(φn, ψn)}∞n=1 が存在することである．
定理 10 Γ-通信路容量 C(Γ)は

C(Γ) = lim inf
n→∞

1

n
log |Xn

≤Γ| (195)

で与えられる．
〔証明〕
1）Direct part:

コスト制約が式 (194) の場合でも符号の作り方は式 (165) の場合と同じなので，定理 10と
同様に順定理の証明が可能である．
2）Converse part: 背理法によって C(Γ) ≤ lim infn→∞

1
n log |Xn

≤Γ|を示す．
そこで

R > lim inf
n→∞

1

n
log |Xn

≤Γ| (196)

が Γ-達成可能であるとして矛盾を導く．まず

R− 2γ > lim inf
n→∞

1

n
log |Xn

≤Γ| (197)

なる γ > 0をとる．ただし γ > 0は十分小さな定数である．Rが達成可能であるから

εn ≤ ε (198)

lim inf
n→∞

1

n
logMn ≥ R (199)

lim
n→∞

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (200)
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なる符号の列 {(φn, ψn)}∞n=1 が存在することになる．ここで，定理 6の式 (61)～(62)と同様
の議論を用いて，無限個の nで

1

n
log |Xn

≤Γ|+ γ <
1

n
logMn (201)

となる．ここで

Sn ≜ {φn(m)|m = 1, · · · ,Mn} (202)

を定義すると

|{φn(m)|m = 1, · · · ,Mn}| ≤Mn (203)

である．そのもとで誤りなく届くm = 1, · · · ,M ′
n の符号語の集合を

S ′
n ≜ {φn(m)|m = 1, · · · ,M ′

n} (204)

|{φn(m)|m = 1, · · · ,M ′
n}| =M ′

n (205)

と定義すると

Mn =M ′
n + (Mn −M ′

n) (206)

M ′
n = |S ′

n| (207)

= |S ′
n ∩ Xn

≤Γ|+ |S ′
n \ Xn

≤Γ| (208)

となり

S ′
n \ Xn

≤Γ ⊂ Sn \ Xn
≤Γ (209)

より

|Sn \ Xn
≤Γ| ≤ |{m|φn(m) ∈ Sn \ Xn

≤Γ}| (210)

= |{m|φn(m) ∈ Snかつφn(m) /∈ Xn
≤Γ}| (211)

≤ |{m|φn(m) /∈ Xn
≤Γ}| (212)

=

∣∣∣∣{m∣∣∣∣ 1ncn(φn(m)) > Γ

}∣∣∣∣ (213)

となることから

M ′
n ≤ |X n

≤Γ|+
∣∣∣∣{m∣∣∣∣ 1ncn(φn(m)) > Γ

}∣∣∣∣ (214)

となる．ここで式 (200) より，∀δ > 0に対して十分大きなすべての nで

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
> 1− δ (215)
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である．よって

Pr

{
1

n
cn(φn(UMn)) ≤ Γ

}
=

1

Mn

∣∣∣∣{m∣∣∣∣ 1ncn(φn(m)) ≤ Γ

}∣∣∣∣ > 1− δ (216)

より

δ > 1− 1

Mn

∣∣∣∣{m∣∣∣∣ 1ncn(φn(m)) ≤ Γ

}∣∣∣∣ (217)

=
1

Mn

∣∣∣∣{m∣∣∣∣ 1ncn(φn(m)) > Γ

}∣∣∣∣ (218)

となる．ここで符号が誤りなく届くことから，式 (218)，式 (214)より

1 =
M ′

n

Mn
+
Mn −M ′

n

Mn
(219)

≤
|Xn

≤Γ|+
∣∣∣∣{m∣∣∣∣ 1ncn(φn(m)) > Γ

}∣∣∣∣
Mn

+ εn (220)

≤
|Xn

≤Γ|
Mn

+
1

Mn

∣∣∣∣{m∣∣∣∣ 1ncn(φn(m)) > Γ

}∣∣∣∣+ εn (221)

≤
|Xn

≤Γ|
Mn

+ δ + ε (222)

となる．よって

Mn(1− δ − ε) ≤ |X n
≤Γ| (223)

1

n
logMn +

1

n
log(1− δ − ε) ≤ 1

n
log |Xn

≤Γ| (224)

となる．ここで γ に対して nが十分に大きければ 1
n log(1− δ − ε) > −γ なので

1

n
logMn − γ ≤ 1

n
log |Xn

≤Γ| (225)

1

n
log |Xn

≤Γ|+ γ ≥ 1

n
logMn (226)

となり，これは式 (201)に矛盾する．よって，達成可能なレート Rは lim infn→∞
1
n log |Xn

≤Γ|
より大きくなれない． □

3.4 小さい誤り確率を漸近的に許す場合
本節では復号誤り確率が漸近的に上から抑えられる場合を考える．
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3.4.1 コスト制約を厳密に満たす
ここでコスト制約が厳密な場合を考える．
定義 11　非負実数 R,Γに対し，レート Rが Γ-達成可能とは

lim sup
n→∞

εn ≤ ε (227)

lim inf
n→∞

1

n
logMn ≥ R (228)

Pr

{
1

n
cn(φn(UMn)) ≤ Γ

}
= 1 (229)

を満たすような符号の列 {(φn, ψn)}∞n=1 が存在することである．
定理 11 Γ-通信路容量 C(Γ)は

C(Γ) = lim inf
n→∞

1

n
log |Xn

≤Γ| (230)

で与えられる．
〔証明〕
順定理・逆定理ともに，符号の構成方法および誤り確率の評価手法自体は定理 9の議論と共通
であり，許容される誤りの基準を lim supn→∞ εn ≤ εに拡張するだけで同様に証明が可能で
ある． □

3.4.2 コスト制約を漸近的に満たす
ここでコスト制約が漸近的な場合を考える．
定義 12　非負実数 R,Γに対し，レート Rが Γ-達成可能とは

lim sup
n→∞

εn ≤ ε (231)

lim inf
n→∞

1

n
logMn ≥ R (232)

lim
n→∞

Pr

{
1

n
cn(φn(UMn

)) ≤ Γ

}
= 1 (233)

を満たすような符号の列 {(φn, ψn)}∞n=1 が存在することである．
定理 12 Γ-通信路容量 C(Γ)は

C(Γ) = lim inf
n→∞

1

n
log |Xn

≤Γ| (234)

で与えられる．
〔証明〕
順定理・逆定理ともに，符号の構成方法および誤り確率の評価手法自体は定理 9の議論と共通
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であり，許容される誤りの基準を lim supn→∞ εn ≤ εに拡張するだけで同様に証明が可能で
ある． □

4 通信路容量の関係
本章では，3章で議論した 8つの条件下での通信路容量の関係を整理する．表 1は，コスト
制約と復号誤り確率の組み合わせに対応する通信路容量の番号を示したものである．
ここで，表中の各番号に対応する通信路容量の式を以下に定義する．

1○ lim inf
n→∞

1

n
log |Xn

≤Γ| (235)

2○ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X)} (236)

3○ sup
X:limn→∞ Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (237)

本章では，これらの通信路容量が全て同じ値であることを示す．
まず，式 (235)と式 (236)において以下の補題が成り立つ．
補題 2　これまで述べた二つの通信路容量に対して

lim inf
n→∞

1

n
log |Xn

≤Γ| = sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (238)

が成立する．
〔証明〕
part(1):

まず

lim inf
n→∞

1

n
log |Xn

≤Γ| ≤ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X)

を示したい．
ここで R < lim infn→∞

1
n log |Xn

≤Γ| なる任意の R を考える．すると，十分大きなすべて

表 1 コスト制約と誤り確率の各条件における通信路容量

コスト制約 / 誤り確率 εn = 0 limn→∞ εn = 0 εn ≤ ε lim supn→∞ εn ≤ ε

Pr

{
1
ncn(φn(UMn

)) ≤ Γ

}
= 1 1○ 2○ 1○ 1○

limn→∞ Pr

{
1
ncn(φn(UMn

)) ≤ Γ

}
= 1 1○ 3○ 1○ 1○
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の nで
1

n
log |Xn

≤Γ| > R (239)

となる．
いま，Xn は Xn

≤Γ 上に一様に分布するとする．すなわち

PXn(x) =

{
1

|Xn
≤Γ

| (x ∈ Xn
≤Γ)

0 (otherwise)
(240)

とする．したがって
1

n
log

1

PXn(Xn)
=

1

n
log |Xn

≤Γ| (241)

より，十分大きなすべての nで

Pr

{
1

n
log

1

PXn(Xn)
≤ R

}
= 0 (242)

∴ lim
n→∞

Pr

{
1

n
log

1

PXn(Xn)
≤ R

}
= 0 (243)

となる．ゆえに

H(X) = p-lim inf
n→∞

1

n
log

1

PXn(Xn)
≥ R (244)

となる．ところが式 (240)よりX は

Pr{Xn ∈ Xn
≤Γ} = 1 (245)

を満たすので

H(X) ≤ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (246)

となる．したがって

R ≤ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (247)

を得る．以上より

lim inf
n→∞

1

n
log |Xn

≤Γ| ≤ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (248)

が成り立つ．
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part(2):

次に

lim inf
n→∞

1

n
log |Xn

≤Γ| ≥ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X)

を示したい．ここで

R < sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (249)

なる任意の Rを考える．すると，あるX が存在して

Pr

{
1

n
cn(X

n) ≤ Γ

}
= 1 (250)

を満たし，かつ

R < H(X) (251)

= p-lim inf
n→∞

1

n
log

1

PXn(Xn)
(252)

となる．ここで付録 Aの補題 3より

R < p-lim inf
n→∞

1

n
log

1

PXn(Xn)
≤ p-lim inf

n→∞

1

n
log |Xn

≤Γ| (253)

= sup

{
θ

∣∣∣∣ limn→∞
Pr

{
1

n
log |Xn

≤Γ| < θ

}
= 0

}
(254)

となる．ここで

A ≜ lim inf
n→∞

1

n
log |Xn

≤Γ| (255)

と定義すると，

sup

{
θ

∣∣∣∣ limn→∞
Pr

{
1

n
log |Xn

≤Γ| < θ

}
= 0

}
≤ A+ γ (256)

となる．また任意の γ > 0に対して無限個の nで

1

n
log |Xn

≤Γ| < A+ γ (257)

Pr

{
1

n
log |Xn

≤Γ| < A+ γ

}
= 1 (258)

lim
n→∞

Pr

{
1

n
log |Xn

≤Γ| < A+ γ

}
= 0 (259)
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とはならない．したがって
R < A+ γ (260)

となるが，γ > 0は任意なので
R ≤ A (261)

= lim inf
n→∞

1

n
log |Xn

≤Γ| (262)

を得る．以上より

lim inf
n→∞

1

n
log |Xn

≤Γ| ≥ sup
X:Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (263)

が成り立つ． □
次に，式 (236)と式 (237)において以下の補題が成り立つ．
補題 4　これまで述べた二つの通信路容量に対して

lim inf
n→∞

1

n
log |Xn

≤Γ| = sup
X:limn→∞ Pr{ 1

n cn(Xn)≤Γ}=1

H(X) (264)

が成立する．
〔証明〕
part(1):

まず

lim inf
n→∞

1

n
log |Xn

≤Γ| ≤ sup
X:limn→∞ Pr{ 1

n cn(Xn)≤Γ}=1

H(X)

を示したい．
ここで R < lim infn→∞

1
n log |Xn

≤Γ| なる任意の R を考える．すると，十分大きなすべて
の nで

1

n
log |Xn

≤Γ| > R (265)

となる．
いま，Xn

≤Γ 上に一様に分布する Xn を考える．すると
1

n
log

1

PXn(Xn)

a.s.
=

1

n
log |Xn

≤Γ| (266)

であるから，十分大きなすべての nで

Pr

{
1

n
log

1

PXn(Xn)
< R

}
≤ Pr

{
1

n
log

1

PXn(Xn)
<

1

n
log |Xn

≤Γ|
}

= 0 (267)

∴ lim
n→∞

Pr

{
1

n
log

1

PXn(Xn)
< R

}
= 0 (268)
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となる．したがって

H(X) = p-lim inf
n→∞

1

n
log

1

PXn(Xn)
≥ R (269)

となる．ところがX は

Pr

{
1

n
cn(X

n) ≤ Γ

}
= Pr{Xn ∈ Xn

≤Γ} = 1 (270)

を満たすので

R ≤ sup
X:Pr{Xn∈Xn

≤Γ
}=1

H(X) (271)

≤ sup
X:limn→∞ Pr{Xn∈Xn

≤Γ
}=1

H(X) (272)

が成り立つ．

part(2):

次に

R < sup
X:Pr{Xn∈Xn

≤Γ
}=1

H(X)

なる ∀Rを考える．このとき

lim
n→∞

Pr{Xn ∈ Xn
≤Γ} = 1 (273)

なる ∃X が存在し R < H(X)である．
R+ γ < H(X)なるような十分小さい ∀γ > 0をとる．すると

lim
n→∞

Pr

{
1

n
log

1

PXn(Xn)
< R+ γ

}
= 0 (274)

である．ここで

Xn
≤Γ ≜

{
x

∣∣∣∣ 1n log
1

PXn(x)
<

1

n
log |Xn

≤Γ|+ γ

}
(275)

とおく．x /∈ Xn
≤Γ ならば PXn(x) ≤ e−nγ

|Xn
≤Γ

| である．すると式 (273)を用いて

Pr{Xn /∈ Xn
≤Γ} =

∑
x

PXn(x)1{x /∈ Xn
≤Γ} (276)

≤
∑

x∈Xn
≤Γ

e−nγ

|Xn
≤Γ|

+
∑

x/∈Xn
≤Γ

PXn(x) (277)

= e−nγ + Pr{Xn /∈ Xn
≤Γ} (278)

→ 0 (279)
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となる．したがって

1

{
1

n
log |Xn

≤Γ| < R

}
≤ Pr

{
1

n
log |Xn

≤Γ| < R,Xn ∈ Xn
≤Γ

}
+ Pr{Xn /∈ Xn

≤Γ} (280)

≤
{
1

n
log

1

PXn(x)
< R+ γ

}
+ Pr{Xn /∈ Xn

≤Γ} (281)

→ 0 (282)

これは十分大きなすべての nで
1

n
log |Xn

≤Γ| ≥ R (283)

なることを意味するので

lim inf
n→∞

1

n
log |Xn

≤Γ| ≥ R (284)

を得る．よって

lim inf
n→∞

1

n
log |Xn

≤Γ| ≥ sup
X:limn→∞ Pr{Xn∈Xn

≤Γ
}=1

H(X) (285)

≥ sup
X:Pr{Xn∈Xn

≤Γ
}=1

H(X) (286)

が成り立つ． □
補題 2と補題 4から，3章で述べた通信路容量が等価であることがわかった．

5 まとめ
本研究では，雑音のない一般通信路の固定長通信路符号化におけるコスト制約付き通信路容
量の証明をした．
雑音がないことから送り手が送った符号シンボルが誤ることなく受け手に届くということを
再定義し，証明を進めるなかで，雑音のない通信路は雑音のある通信路の特別な条件であるた
め，同じ証明で導けると考えたが，雑音のない通信路の特別な証明が必要だった．
本研究で定義した補題を活用して，雑音のない一般通信路の可変長通信路符号化におけるコ
スト制約付き通信路容量を考え，固定長通信路符号化との関係を考察するとともに，情報源の
レート歪み特性と通信路のコスト制約がトレードオフの関係において，いかに効率的なリソー
ス分配が可能かという情報源符号化と通信路符号化の双対性に基づいた新たな解析手法の確立
が検討できる．
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付録 A 補題の証明
ここでは次の補題を証明する．
補題 1　符号 φn(Mn) 上の一様分布に従う確率変数を Xn とし，各 n = 1, 2, · · · に対して

εn ≥ Pr

{
1

n
log

1

PXn(Xn)
≤ 1

n
logMn − γ

}
− e−nγ (287)

が成立する．
〔証明〕　証明を始めるにあたり

Ln ≜
{
x

∣∣∣∣ 1n log
1

PXn(x)
≤ 1

n
logMn − γ

}
(288)

とおく．これらを用いると，式 (287)は

εn ≥ Pr{Xn ∈ Ln} − e−nγ (289)

と書き換えられる．これを示すために，正しく復号されるメッセージの集合を D = {m ∈
Mn|ψn(φn(m)) = m}とすると，

Pr{Xn ∈ Ln} =

Mn∑
m=1

Pr{Xn ∈ Ln, UMn = m} (290)

=

Mn∑
m=1

Pr{φn(UMn
) ∈ Ln, UMn

= m} (291)

=

Mn∑
m=1

Pr{φn(m) ∈ Ln, UMn
= m} (292)

=

Mn∑
m=1

1{φn(m) ∈ Ln} · Pr{UMn = m} (293)

=
1

Mn

Mn∑
m=1

1{φn(m) ∈ Ln} (294)

=
1

Mn

Mn∑
m=1

1{φn(m) ∈ Ln,m /∈ D}+ 1

Mn

Mn∑
m=1

1{φn(m) ∈ Ln,m ∈ D}

(295)
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となる．ここで，第 1項は，

1

Mn

Mn∑
m=1

1{φn(m) ∈ Ln,m /∈ D} ≤ 1

Mn

Mn∑
m=1

1{m /∈ D} (296)

=
1

Mn

Mn∑
m=1

1{ψn(φn(m)) ̸= m} (297)

= εn (298)

となる．また，第 2項は，

1

Mn

Mn∑
m=1

1{φn(m) ∈ Ln,m ∈ D} =

Mn∑
m=1

1

Mn
1{φn(m) ∈ Ln,m ∈ D} (299)

となる．ここで x ∈ Ln のとき
1

n
log

1

PXn(x)
≤ 1

n
logMn − γ (300)

log
1

PXn(x)
≤ logMn − nγ (301)

log
1

PXn(x) ·Mn
≤ −nγ (302)

1

PXn(x) ·Mn
≤ e−nγ (303)

1

Mn
≤ PXn(x) · e−nγ (304)

であるが，φn(m) ∈ Ln なので
1

Mn
≤ PXn(φn(m)) · e−nγ (305)

である．よって，式 (299)は

1

Mn

Mn∑
m=1

1{φn(m) ∈ Ln,m ∈ D} =

Mn∑
m=1

1

Mn
1{φn(m) ∈ Ln,m ∈ D} (306)

≤
Mn∑
m=1

PXn(φn(m))e−nγ1{φn(m) ∈ Ln,m ∈ D} (307)

≤ e−nγ
Mn∑
m=1

PXn(φn(m))1{m ∈ D} (308)

= e−nγ
∑
m∈D

PXn(φn(m)) (309)

≤ e−nγ (310)
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となる．ただし最後の不等式は，m ∈ D に対して φn(m) はすべて異なるためである．した
がって

Pr{Xn ∈ Ln} ≤ εn + e−nγ (311)

となる．よって式 (287)が示された． □
補題 3　あるX が存在して Pr

{
1
ncn(X

n) ≤ Γ

}
= 1を満たすとき

H(X) ≤ p-lim inf
n→∞

1

n
log |Xn

≤Γ| (312)

が成立する．
〔証明〕　確率的下極限の定義より

Pr

{
1

n
log

1

PXn(Xn)
>

1

n
log |Xn

≤Γ|+ γ

}
(313)

=
∑

x∈Xn
≤Γ

PXn(x)1

{
1

n
log

1

PXn(x)
>

1

n
log |Xn

≤Γ|+ γ

}
(314)

=
∑

x∈Xn
≤Γ

PXn(x)1

{
PXn(x) <

1

|Xn
≤Γ|

e−nγ

}
(315)

≤
∑

x∈Xn
≤Γ

1

|Xn
≤Γ|

e−nγ (316)

=e−nγ (317)

となり，式 (317)は 0に収束する．したがって

Pr

{
1

n
log |Xn

≤Γ| < θ − γ

}
≤ Pr

{
1

n
log |Xn

≤Γ| < θ − γ,Xn ∈ Xn
≤Γ

}
+ Pr{Xn /∈ Xn

≤Γ}

(318)

≤ Pr

{
1

n
log

1

PXn(Xn)
< θ

}
+ e−n+γ (319)

となる．すなわち

lim
n→∞

Pr

{
1

n
log

1

PXn(Xn)
< θ

}
= 0 (320)

ならば

lim
n→∞

Pr

{
1

n
log |Xn

≤Γ| < θ − γ

}
= 0 (321)
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である．ここで

B < p-lim inf
n→∞

1

n
log

1

PXn(Xn)
(322)

= sup

{
θ

∣∣∣∣Pr{ 1

n
log

1

PXn(Xn)
< θ

}
= 0

}
(323)

とおく．このとき

lim
n→∞

Pr

{
1

n
log

1

PXn(Xn)
< B

}
= 0 (324)

であるため，任意の γ > 0に対して

lim
n→∞

Pr

{
1

n
log |Xn

≤Γ| < B − γ

}
= 0 (325)

となる．したがって

B − γ ≤ p-lim inf
n→∞

1

n
log |Xn

≤Γ| (326)

となり，任意の γ > 0に対して

B < H(X) (327)

であるならば

B ≤ p-lim inf
n→∞

1

n
log |Xn

≤Γ|+ γ (328)

となる．ゆえに

H(X) ≤ p-lim inf
n→∞

1

n
log |Xn

≤Γ| (329)

を得る． □
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