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1 はじめに
現代社会では,情報のやりとりやコミュニケーションが活発に行われており通信は不可欠な
存在となっている. この通信において,情報は雑音のある通信路を通って受信者に届けられる
ため,送りたい情報をそのまま送信すると誤りが生じやすくなってしまう. そこで,符号化と呼
ばれる送信前の変換処理によって,通信中に生じる誤りを低減することが試みられる. ただ,通
信において重要となるのは，誤りがないことと通信の効率の二つであるが,この二つはトレー
ドオフの関係にある．この両者の関係を示し，通信の効率の限界を求める問題を通信路符号化
問題という．
　また，実際の通信には電力や時間などのコストがかかり，かけられるコストには限界があ
る．そこで，コストという概念を数学的に定義し，通信路符号化問題にコスト制約をかけるこ
とを考える．先行研究では通信路の入力に対して定義したコストを制約する先払いコスト制約
付き通信路符号化問題 [2][6]や通信路の出力に対して定義したコストを制約する着払いコスト
制約付き通信路符号化問題 [3]が解かれている.

　先払いコスト制約付き通信路符号化 [2][6]では 2つの異なるコスト制約が課された下で問題
が解かれている. 一つは,先払いコストが既定の値を超える確率を抑えるという自然なコスト
制約を課した場合であり,もう一つはこれよりも相対的に強いコスト制約を課した場合である.

これは, コスト制約の与え方には様々な選択肢が考えられるため, そのバリエーションを含め
て問題を検討することを目的としている. 一方,着払いコスト制約付き通信路符号化 [3]で解か
れている問題設定では,課されているコスト制約は必ずしも自然とは言い難い. 具体的には,コ
ストが既定の値 Γを超えてしまう確率がある定数 δ より大きくなるという事象が漸近的に生
じなくなるような Γのなかで最小の Γを抑えるという制約が課されている. しかし,コスト制
約を課す場合には, 先払いコストを制約した問題設定と同様に, まず着払いコストが既定の値
を超えてしまう確率そのものを抑えることが自然であると考えられる.

　本論文では,コストをより自然な形で制約した着払いコスト制約付き通信路符号化問題を解
く. このようなコスト制約を課す場合,各符号語を送信したもとでのコストの条件付き分布を
符号語の分布で平均化する必要がある. 従来の手法ではこの計算は困難であったが，分布関
数を抑えるために提案された西新 [4]の符号構成法を一般化することによりこの困難は解決さ
れる．期待値は分布関数を用いて表現できるため,この符号構成法は本研究の有効的な手法に
なっている. これにより,制約を満たすようにコストの期待値を抑えつつ,通信路符号化定理を
導出する.
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2 一般通信路における通信路符号化
本論文ではM 以下の自然数の上に一様に分布する確率変数を UM と書く．また，扱う対数
はすべて自然対数である．
　通信路の入力アルファベットを X , 出力アルファベットを Y とする. このとき,一般通信路
は,入力系列 x = (x1, x2, · · · , xn) ∈ Xn と出力系列 y = (y1, y2, · · · , yn) ∈ Yn を用いて,条
件付き確率の列W ≜ {Wn(y|x)}∞n=1 で表すことができる. Xn の中に値をとる任意の確率変
数を Xn とし,その列X = {Xn}∞n=1 を入力過程と呼ぶ. そしてX に対応する通信路W の
出力過程 Y = {Y n}∞n=1 を

PXnY n(x,y) = PXn(x)Wn(y|x) (1)

によって定める. このとき, Y n は Yn の中に値をとる確率変数である. 本論文では入力をX

としたときの通信路出力を Y (X)と表記する. また,個別の nについても同様に Y n(Xn)と
表記する.

　送り手が選ぶMn 個のメッセージの集合をMn = {1, 2, . . . ,Mn}とし,この中から 1つを
選び,通信路Wn を通して受信側に送ることにする. ただし,Mn 個のメッセージは等確率で選
ばれると仮定する. 選ばれたメッセージ m ∈ Mn は,符号器 φn :Mn → Xn で符号化され,

復号器 ψn : Yn →Mn によって, 通信路の出力 y ∈ Yn を復号する. そのときの φn(m) を
メッセージm ∈Mn の符号語という. 符号器 φn と復号器 ψn の組 (φn, ψn)を符号と呼び,そ
の符号化レート Rは

R ≜ 1

n
logMn (2)

で与えられる.

　また,入力メッセージと出力メッセージは必ずしも一致するとは限らない. そのときの一致
しない確率は

εn ≜ 1− 1

Mn

Mn∑
m=1

Wn(ψ−1
n (m)|ψn(m)) (3)

と表され, 符号 (φn, ψn) の復号誤り確率と呼ばれる. ここで, ψ−1
n (m) ≜ {y ∈ Yn|φn(y) =

m}であり, mまたは φn(m)の復号領域と呼ばれる.

　復号誤り確率と符号化レートの間にはトレードオフの関係がある. 通信路符号化問題は,こ
の関係を明らかにし,通信の効率の限界を理論的に求めることを目的とする. したがって,誤り
確率が所定の基準以下となるような符号の列 {(φn, ψn)}∞n=1 が存在するという条件の下で,符
号化レートをどこまで大きくできるかを評価する問題として定式化される. したがって,通信
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路符号化における最も基本的な問題設定は以下のように定義される [1].

定義 1 レート Rが達成可能とは

lim
n→∞

εn = 0 かつ (4)

lim inf
n→∞

1

n
logMn ≥ R (5)

なる符号の列 {(φn, ψn)}∞n=1 が存在することである．
定義 2 通信路容量を

C ≜ sup{R|Rが達成可能 } (6)

と定義する.

　通信路容量を数学的に表すために,まず確率的 (上/下)極限と呼ばれる概念を導入する.

定義 3 一般に実数値確率変数列 {Zn}∞n=1 に対して

p- lim sup
n→∞

Zn ≜ inf
{
α
∣∣∣ lim
n→∞

Pr{Zn > α} = 0
}

(7)

p- lim inf
n→∞

Zn ≜ sup
{
α
∣∣∣ lim
n→∞

Pr{Zn < α} = 0
}

(8)

とし,それぞれ確率的上極限,確率的下極限と呼ぶ.

　そして,一般通信路における通信路符号化問題では以下の量が中心的な役割を果たす.

定義 4 二つの確率変数列X，Y に対して

I(X;Y ) ≜ p- lim inf
n→∞

1

n
log

Wn(Y n|Xn)

PY n(Y n)
(9)

とする.

　この量を用いて，一般通信路における通信路容量に関して以下の定理が知られている．
定理 1[1] 一般通信路における通信路容量は

C = sup
X

I(X;Y ) (10)

で与えられる．

3 先払いコスト制約
通信路符号化問題のある状況では,通信にかかるコストを考えなければならないことがある.

そこで,コストという概念を実数値関数 cn を用いて数学的に定義し,コスト制約を課すことを
考える. cn をコスト関数と呼び,符号語及び受信語に対してコスト制約を課す. そして,復号誤
り確率, 符号化レート, コスト制約のそれぞれに対して所定の要請を満たしつつ通信路容量を
導出する.
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　本章では,通信路の入り口である符号語に対してコスト制約を課した問題設定を扱う. 入力
アルファベット Xn 上で定義されるコスト cn(x)を先払いコストと呼び,これを制約する通信
路符号化問題を先払いコスト制約付き通信路符号化と呼ぶ. 現実の通信においても,送信時に
必要な電力などは電波法により制限されており, 先払いコストは実用上も重要な観点である.

この問題は先行研究 [2]で既に解かれている．
定義 5 X と任意の 0 ≤ Γ,0 ≤ β < 1に対して

c̄β(X) ≜ inf

{
Γ

∣∣∣∣ lim sup
n→∞

Pr

{
1

n
cn(X

n) > Γ

}
≤ β

}
(11)

と定義する.

定義 6 任意の Γ ≥ 0, β ≥ 0, 0 ≤ ε < 1に対し，レート Rが (ε, β,Γ)-達成可能とは
lim sup
n→∞

εn ≤ ε (12)

lim inf
n→∞

1

n
logMn ≥ R (13)

c̄β({φn(UMn)}∞n=1) ≤ Γ (14)

がすべて成り立つような符号の列 {(φn, ψn)}∞n=1 が存在することである．
　一般通信路において，式 (12) のように復号誤り確率を ε まで許容する通信路符号化問題で
は，式 (9) に代わって以下の量が用いられる.

定義 7 二つの確率変数列X，Y に対して

Iε(X;Y ) ≜ sup

{
θ

∣∣∣∣ lim sup
n→∞

Pr

{
1

n
log

Wn(Y n|Xn)

PY n(Y n)
< θ

}
≤ ε

}
(15)

とする．なお, ε = 0のとき (9)と (15)は一致する.

定義 8 ε, β,Γに対して
Cin(ε, β,Γ) ≜ sup{R|Rは (ε, β,Γ)-達成可能 } (16)

と定義し，これを (ε, β,Γ)-通信路容量と呼ぶ．
　このとき，次の定理が成り立つことが知られている．
定理 2 [2] 一般通信路における (ε, β,Γ)-通信路容量は

Cin(ε, β,Γ) = sup
X:c̄β(X)≤Γ

Iε(X;Y ) (17)

と表される．
　また，先行研究 [6]の中では式 (11)とは別のコスト指標によって先払いコストが制約された
問題設定についても触れられている.

定義 9 X と任意の 0 ≤ Γ, 0 ≤ β < 1に対して

c̄′β(X) ≜ inf

{
Γ

∣∣∣∣p- lim sup
n→∞

1

{
1

n
cn(X

n) > Γ

}
≤ β

}
(18)
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と定義する. ここで, 1{·}は条件 Aに対して

1{A} ≜
{
1, if A holds,

0, otherwise
(19)

となる関数である.

　 (11)と (18)の中の関数を比較すると

lim sup
n→∞

Pr

{
1

n
cn(X

n) > Γ

}
≤ p- lim sup

n→∞
1

{
1

n
cn(X

n) > Γ

}
(20)

が成り立つ. よって,定義 5におけるコスト制約の代わりに (18)を用いることで相対的に強い
先払いコスト制約となる. この強い先払いコスト制約付き通信路符号化は, (17)におけるコス
ト制約を

c̄′β(X) ≤ Γ (21)

と置き換えて定式化される. さらに, ε = 0における Cin(ε, β,Γ)-通信路容量を Cin,str(β,Γ)と
定義すると以下の定理が成り立つ.

定理 3[6] 一般通信路における (β,Γ)-通信路容量は

Cin,str(β,Γ) = sup
X:c̄′β(X)≤Γ

I(X;Y ) (22)

と表される．
　この定理の証明は文献 [6] には記載されていない. そこで, 本論文の付録 A に証明を記載
する．

4 着払いコスト制約
本章では受信語に対してコスト制約を課した問題設定を扱う. 出力アルファベット Yn 上で
定義されるコスト cn(y)を着払いコストと呼び,これを制約する通信路符号化問題を着払いコ
スト制約付き通信路符号化と呼ぶ. 通信時のコストは従来,送信側である符号語に対して課す
のが一般的であったが, 受信後の処理時間や消費電力など, 出力側で発生する資源の制約は現
実の通信システムでも重要であり,着払いコストはこれらを数学的に定式化したもである. こ
の問題は,先行研究 [3]において以下のように定式化され解かれている.

定義 10 X と δ ≥ 0に対して

c̄δ(X) ≜ inf

{
Γ

∣∣∣∣p- lim sup
n→∞

Wn(Yn
>Γ|Xn) ≤ δ

}
(23)
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と定義する. ここで，Yn
>Γ は

Yn
>Γ ≜

{
y ∈ Yn

∣∣∣∣ 1ncn(y) > Γ

}
(24)

である．
定義 11 符号化レート Rが (ε, δ,Γ)-達成可能とは

lim sup
n→∞

εn ≤ ε, (25)

lim inf
n→∞

1

n
logMn ≥ R, (26)

c̄δ({φn(UMn
)}∞n=1) ≤ Γ, (27)

となるような符号の列 {(φn, ψn)}∞n=1 が存在することである.

定義 12 ε, δ,Γに対して

Cout,str(ε, δ,Γ) ≜ sup{R|Rは (ε, δ,Γ)-達成可能 } (28)

と定義し，これを (ε, δ,Γ)-通信路容量と呼ぶ．
定理 4([3]) (ε, δ,Γ)-通信路容量は

Cout,str(ε, δ,Γ) = sup
X:c̄δ(X)≤Γ

Iε(X;Y ) (29)

で与えられる.

5 着払いコストに自然な制約を課した通信路符号化定理
先行研究 [3]で用いられるコスト指標 (23) には，確率的上極限が含まれており,これを δ で
抑えている. 確率的上極限は，実数値確率変数列に対して，その値がある定数 α を超える確
率が漸近的に 0となるような αの下限を与える量である. (23) における確率的上極限の対象
となる確率変数は，ある入力に対して着払いコストが規定値 Γ を超える条件付き確率であり，
その分布は Γ に依存している. したがって，先行研究 [3]におけるコスト制約は，着払いコス
トが規定値を超える確率が漸近的に δ 以下となるような確率分布を与える Γ の中で，最小の
値を制約していると解釈できる. しかし，このような制約は必ずしも自然であるとは言い難い.

そこで本研究では，着払いコストに対してより自然なコスト制約を課す. この議論が本論文の
主題である.

定義 13 Y と任意の Γ ≥ 0に対して

c̄Γ(Y ) ≜ lim sup
n→∞

Pr

{
1

n
cn(Y

n) > Γ

}
(30)
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と定義する.

　ここで,右辺に含まれる確率は

Pr

{
1

n
cn
(
Y n(Xn)

)
> Γ

}
(31)

=
∑
x

PXn(x) Pr

{
1

n
cn
(
Y n(x)

)
> Γ

∣∣∣Xn = x

}
(32)

=
∑
x

PXn(x)Wn(Yn
>Γ|x) (33)

= E
[
Wn(Yn

>Γ|Xn)
]

(34)

と変形できる. したがって, (23)も (34)もその値は確率変数Wn(Yn
>Γ|Xn)によって決定され

る. この確率変数は常に [0, 1] に値をとることから
p- lim sup

n→∞
Wn(Yn

>Γ|Xn) ≥ lim sup
n→∞

E
[
Wn(Yn

>Γ|Xn)
]

(35)

が成り立つことがわかっている [4,Proposition 1]. つまり，式 (30) をコスト評価に用いるこ
とで式 (23)を用いた場合と比較して緩和した着払いコスト制約となる.

定義 14 符号化レート Rが (ε,Γ, δ)-達成可能とは
lim sup
n→∞

εn ≤ ε, (36)

lim inf
n→∞

1

n
logMn ≥ R, (37)

c̄Γ
(
{Y n(φn(UMn))}∞n=1

)
≤ δ, (38)

となるような符号の列 {(φn, ψn)}∞n=1 が存在することである.

定義 15 ε,Γ, δ に対して
Cout(ε,Γ, δ) ≜ sup{R|Rは (ε,Γ, δ)-達成可能 } (39)

と定義し，これを (ε,Γ, δ)-通信路容量と呼ぶ．
定理 5 (ε,Γ, δ)-通信路容量は

Cout(ε,Γ, δ) = sup
X:c̄Γ(Y )≤δ

Iε(X;Y ) (40)

で与えられる. ここで, Y = Y (X)である.

　定理 5の証明は順定理
Cout(ε,Γ, δ) ≥ sup

X:c̄Γ(Y )≤δ

Iε(X;Y ) (41)

と逆定理
Cout(ε,Γ, δ) ≤ sup

X:c̄Γ(Y )≤δ

Iε(X;Y ) (42)

の 2つに分けられる.
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5.1 順定理
本節では,順定理の証明を行う. 順定理の証明は新たな補題を用いることにより分布の形そ
のものを経由して導出した. そのために,まず分布関数と呼ばれる関数について基本的な関係
を紹介する.

　一般に実数値確率変数 Z の分布関数を FZ と表す. すなわち,任意の ξ に対して

FZ(ξ) ≜ Pr{Z ≤ ξ} (43)

とおく. また,分布関数の逆関数を

F−1
Z (p) ≜ inf{ξ|FZ(ξ) ≥ p} (44)

とおく.

　ここで,逆関数の基本的な性質に基づく命題を示す.

命題 1

F−1
Z (p) ≤ ξ ⇔ FZ(ξ) ≥ p (45)

が成り立つ.

　さらに, 分布関数の逆関数は積分することで確率変数の期待値が得られることも知られて
おり

E[Z] =
∫ 1

0

F−1
Z (p)dp (46)

である.

　次に,2つの分布関数の間の大小関係を表現するために以下を定義する.

定義 16 2つの確率変数列 {Zn}∞n=1,{Vn}∞n=1 を考える.任意の γ > 0に対して nが十分大き
ければすべての実数 ξ で

FZn(ξ) ≥ FVn(ξ − γ)− γ (47)

が成り立つことを

Zn

d

≲ Vn as n→∞ (48)

と表す．「as n→∞」は文脈から明らかなとき省略される.

　そして,順定理の証明では以下の補題を適用する.

補題 1 情報源 Xn, 整数 Mn, 正数 γ, 整数 K が与えられており, g(·) を任意の関数とする．
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情報源 Xn を通信路の入力に接続したときの出力を Y n とする. すなわち Y n = Y n(Xn) と
する.

Bn(x) ≜
{
y ∈ Yn

∣∣∣∣ 1n log
Wn(y|x)
PY n(y)

≥ 1

n
logMn + γ

}
(49)

とおく.このとき符号語数がMn で

εn ≤ Pr
{
Y n /∈ Bn(Xn)

}
+Ke−nγ +

K2

Mn
, (50)

Pr{g(φn(UMn
)) ≤ ξ} ≥ Pr{g(Xn) ≤ ξ} − 1

K
(51)

となるような符号 (φn, ψn)が存在する.

　西新 [4]では (51)に示した分布の大小関係はコストの分布に対してのみ得られていた. 本補
題は,この関係が任意の分布に対しても得られるように一般化している. この補題において関
数 g(·)をWn(Yn

>Γ|·)として適用することでコスト制約を満たすために必要な関係式を導出で
きる. 補題 1の証明は付録 Bに示すが文献 [4]と本質的に同一である.

〔順定理の証明〕

R0 ≜ sup
X:c̄Γ(Y )≤δ

Iε(X;Y ) (52)

とし, R < R0 となる任意の Rを考える. すると,ある γ′ > 0に対して

R+ 2γ′ < Iε(X;Y ), (53)

c̄Γ(Y ) ≤ δ, (54)

なるX が存在する. Iε(X;Y ) の定義より任意の自然数 k に対して，

lim sup
n→∞

Pr

{
1

n
log

Wn(Y n | Xn)

PY n(Y n)
< Iε(X;Y )− 1

k

}
≤ ε (55)

である．したがって，十分大きなすべての n に対して，

Pr

{
1

n
log

Wn(Y n | Xn)

PY n(Y n)
< Iε(X;Y )− 1

k

}
≤ ε+ 1

k
(56)

である．各 n に対して，(56) と k <
√
n を満たすような最大の k を用いて，γn ≜ 1

k とおく．
このとき，γn → 0，かつ

Pr

{
1

n
log

Wn(Y n | Xn)

PY n(Y n)
< Iε(X;Y )− γn

}
≤ ε+ γn, (57)

nγn >
√
n, (58)

9



である．
　ここで, Mn ≜ enR とおき, γ = γn, K = n, g(·) =Wn(Yn

>Γ|·)として補題 1を適用すると

εn ≤ Pr {Y n /∈ Bn(Xn)}+ ne−nγn +
n2

Mn
, (59)

Pr{Wn
(
Yn
>Γ|φn(UMn

)
)
≤ ξ} ≥ Pr{Wn(Yn

>Γ|Xn) ≤ ξ} − 1

n
(60)

となるような符号 (φn, ψn)が得られる. Yn
>Γ は (24)で定義される. このときの符号化レート

については自明に

lim inf
n→∞

1

n
logMn ≥ R (61)

となり,コストの分布については (60)より

Wn
(
Yn
>Γ|φn(UMn)

) d

≲Wn(Yn
>Γ|Xn) (62)

となる. 復号誤り確率については (59)の右辺の各項を確認する. 第 1項は

Pr {Y n /∈ Bn(Xn)} (63)

= Pr

{
1

n
log

Wn(Y n|Xn)

PY n(Y n)
<

1

n
logMn + γn

}
(64)

= Pr

{
1

n
log

Wn(Y n|Xn)

PY n(Y n)
< R+ γn

}
(65)

≤ Pr

{
1

n
log

Wn(Y n|Xn)

PY n(Y n)
< Iε(X;Y )− γn

}
(66)

≤ ε+ γn → ε (67)

となる. 第 2項と第 3項はそれぞれ

ne−nγn < ne−
√
n → 0 (68)

n2

Mn
= n2e−nR → 0 (69)

となる. したがって

lim sup
n→∞

εn ≤ ε (70)

が得られる.

次に,コストを評価する. まず,

Zn ≜Wn
(
Yn
>Γ | φn(UMn)

)
, (71)

Vn ≜Wn
(
Yn
>Γ | Xn

)
(72)

10



とおく. すると (62)より,任意の γ > 0に対して nが十分大きければ任意の実数 ξ で

FZn
(ξ) ≥ FVn

(ξ − γ)− γ (73)

である. したがって任意の pに対して

FVn
(ξ − γ)− γ ≥ p⇒ FZn

(ξ) ≥ p (74)

である. これは (45)より逆関数を用いて

F−1
Vn

(p+ γ) ≤ ξ − γ ⇒ F−1
Zn

(p) ≤ ξ (75)

と書ける. ところがこれは

F−1
Zn

(p) ≤ F−1
Vn

(p+ γ) + γ (76)

を意味する. これを両辺に共通の定義域で積分すると∫ 1−γ

0

F−1
Zn

(p)dp ≤
∫ 1−γ

0

[
F−1
Vn

(p+ γ) + γ
]
dp (77)

≤
∫ 1−γ

0

F−1
Vn

(p+ γ)dp+ γ (78)

=

∫ 1

γ

F−1
Vn

(p)dp+ γ (79)

となるため

E[Zn]− E[Vn] (80)

=

∫ 1−γ

0

F−1
Zn

(p)dp+

∫ 1

1−γ

F−1
Zn

(p)dp−
∫ 1

0

F−1
Vn

(p)dp (81)

≤
∫ 1

γ

F−1
Vn

(p)dp+ γ +

∫ 1

1−γ

F−1
Zn

(p)dp−
∫ γ

0

F−1
Vn

(p)dp−
∫ 1

γ

F−1
Vn

(p)dp (82)

= γ +

∫ 1

1−γ

F−1
Zn

(p)dp−
∫ γ

0

F−1
Vn

(p)dp (83)

となる.

ここで, (71) より Zn は条件付確率として定義されているため, これに対応する分布関数の
逆関数 F−1

Zn
(p)は高々 1の値をとる. これより, (83)の第二項は区間 [1 − γ, 1]にわたる積分

であるため面積は高々 γ となる. また,第三項は非負である. よって

E[Zn]− E[Vn] ≤ γ + γ (84)

= 2γ (85)

11



である. したがって

lim sup
n→∞

(
E[Zn]− E[Vn]

)
≤ 0 (86)

である. (86)より直ちに

lim sup
n→∞

E[Zn] ≤ lim sup
n→∞

E[Vn] (87)

が成り立ち,さらに (71), (72) より

lim sup
n→∞

E
[
Wn

(
Yn
>Γ|φn(UMn)

)]
≤ lim sup

n→∞
E
[
Wn(Yn

>Γ|Xn)
]

(88)

である. ここで

E
[
Wn(Yn

>Γ|Xn)
]

(89)

= Pr

{
1

n
cn
(
Y n(Xn)

)
> Γ

}
(90)

であり,同様に

E
[
Wn(Yn

>Γ|φn(UMn))
]

= Pr

{
1

n
cn
(
Y n(φn(UMn

))
)
> Γ

}
(91)

であるので (88)は

lim sup
n→∞

Pr

{
1

n
cn
(
Y n(φn(UMn

))
)
> Γ

}
≤ lim sup

n→∞
Pr

{
1

n
cn
(
Y n(Xn)

)
> Γ

}
(92)

と書くことができる. また, (54)より

lim sup
n→∞

Pr

{
1

n
cn
(
Y n(Xn)

)
> Γ

}
≤ δ (93)

であるため (92),(93)より

lim sup
n→∞

Pr

{
1

n
cn
(
Y n(φn(UMn

))
)
> Γ

}
≤ δ (94)

となり

c̄Γ
(
{Y n(φn(UMn

))}∞n=1

)
≤ δ (95)

が成り立つ.

(61), (70), (95) から R は (ε,Γ, δ)-達成可能である. よって R ≤ Cout(ε,Γ, δ) である.

R < R0 は任意であったので

sup
X:c̄Γ(Y )≤δ

Iε(X;Y ) ≤ Cout(ε,Γ, δ) (96)

となる.
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5.2 逆定理
本節では,逆定理の証明を行う. その中では以下の補題を用いる.

補題 2([5]) 任意の符号 (φn, ψn)に対してXn ≜ φn(UMn), Y
n ≜ Y n(Xn)とおく. このとき,

任意の γ > 0に対して

εn ≥ Pr

{
1

n
log

Wn(Y n|Xn)

PY n(Y n)
≤ 1

n
logMn − γ

}
− e−nγ (97)

が成立する.

〔逆定理の証明〕Rを (ε,Γ, δ)-達成可能である任意のレートとする. Xn ≜ φn(UMn
)とし, Xn

を入力とする通信路Wn の出力を Y n として, X = {Xn}∞n=1, Y = {Y n}∞n=1 とおく. 定義 8

よりX は c̄Γ(Y
n) ≤ δ を満たす. ここで, γ = γn ≜ 1√

n
とすれば補題 2と (36)より

lim sup
n→∞

Pr

{
1

n
log

Wn(Y n|Xn)

PY n(Y n)
≤ 1

n
logMn − γn

}
(98)

≤ lim sup
n→∞

εn (99)

≤ ε (100)

となる. また (37)より,任意の γ > 0に対して十分大きなすべての nで
1

n
logMn − γn > R− γ (101)

が成り立つので, (100)より

lim sup
n→∞

Pr

{
1

n
log

Wn(Y n|Xn)

PY n(Y n)
≤ R− γ

}
≤ ε (102)

となる. さらに, Iε(X;Y )の定義より
R− γ ≤ Iε(X;Y ) (103)

を得る. ここで γ > 0は任意だったので
R ≤ Iε(X;Y ) (104)

と表せる. いま, X は c̄Γ(Y
n) ≤ δ を満たすので

R ≤ sup
X:c̄Γ(Y )≤δ

Iε(X;Y ) (105)

が成り立つ. Rは (ε,Γ, δ)-達成可能な任意のレートであるため (ε,Γ, δ)-通信路容量は
Cout(ε,Γ, δ) ≤ sup

X:c̄Γ(Y )≤δ

Iε(X;Y ) (106)

となる.
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6 まとめ
本論文では,先払いコスト及び着払いコストを制約した通信路符号化問題を扱った. 中でも
本研究の主な成果は, 着払いコストに自然な制約を課した通信路符号化問題に対して, その通
信路符号化定理を導出した点にある. 着払いコスト制約を自然に課すことで,確率的に変動す
る出力コストの期待値を抑える必要が生じるが,従来の符号構成法ではこの制約が困難であっ
た. そこで,任意の分布を抑える符号構成法を導入し,緩和された制約を満たす符号の設計を試
みた. これにより,コスト制約を満たしつつ通信路符号化定理を示すことができた.
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付録 A 定理 3の証明
定理 3の証明にあたり以下の補題を適用する.

補題 3 情報源 Xn, 整数 Mn, 正数 γ, 部分集合 Sn ∈ Xn が与えられているとする．情報源
Xn を通信路の入力に接続したときの出力を Y n とする. すなわち Y n = Y n(Xn)とする.

Bn(x) ≜
{
y ∈ Yn

∣∣∣∣ 1n log
Wn(y|x)
PY n(y)

≥ 1

n
logMn + γ

}
(107)

とおく.このとき符号語数がMn で

εn ≤ Pr
{
Y n /∈ Bn(Xn)

}
+ (1 + PXn(Sn))e−nγ +

1

Mn
, (108)

となるような符号 (φn, ψn)が存在し,Mn 個のうち ⌈PXn
(Sn)Mn⌉個の符号語が Sn に含まれ

る.

〔順定理の証明〕

R < sup
X:c̄′β(X)≤Γ

I(X;Y ) (109)

を満たすような任意の Rを考える. すると,ある γ > 0に対して

c̄′β(X) ≤ Γ (110)

I(X;Y ) > R+ γ (111)

を満たすX が存在する.

　 c̄′β(X)の定義から任意の自然数 k に対して

p- lim sup
n→∞

1

{
1

n
cn(X

n) > Γ +
1

k

}
≤ β (112)

が成り立つ. すなわち,

inf

{
θ

∣∣∣∣∣ lim
n→∞

Pr

{
1

{
1

n
cn(X

n) > Γ +
1

k

}
> θ

}
= 0

}
≤ β (113)

であり,

lim
n→∞

Pr

{
1

{
1

n
cn(X

n) > Γ +
1

k

}
> β +

1

k

}
= 0 (114)
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が成り立つ. 十分大きなすべての nに対して

Pr

{
1

{
1

n
cn(X

n) > Γ +
1

k

}
> β +

1

k

}
≤ 1

k
(115)

が成り立つ. ここで,逆に固定された nに対して (115)を満たす一番大きな k を選ぶ. このよ
うな k を用いて γn ≜ 1

k とすると,

Pr

{
1

{
1

n
cn(X

n) > Γ +
1

k

}
> β + γn

}
≤ γn (116)

を満たし,γn → 0である.

　ここで, Mn ≜ enR,

Sn ≜
{
x ∈ Xn

∣∣∣∣1{ 1

n
cn(x) > Γ + γn

}
≤ β + γn

}
(117)

とし,補題 3を適用する. すると,

εn ≤ Pr {Y n /∈ Bn(Xn)}+
{
1 + PXn(Sn)

}
e−nγ +

1

Mn
(118)

を満たし, Mn 個の符号語を持った符号 (φn, ψn)を得る. これらのうち, ⌈PXn(Sn)Mn⌉個が
Sn に含まれる. 符号化レートはMn の定義より自明に

lim inf
n→∞

1

n
logMn ≥ R (119)

である. また, 誤り確率については (118) の右辺の各項を確認する. 第 1 項は Bn(x) 及び
Iε(X;Y )の定義より

lim sup
n→∞

Pr {Y n /∈ Bn(Xn)} (120)

= lim sup
n→∞

Pr

{
1

n
log

Wn(Y n|Xn)

PY n(Y n)
< R+ γ

}
(121)

= 0 (122)

となる. 第 2項と第 3項はそれぞれ極限で 0となる. したがって

lim sup
n→∞

εn = 0 (123)

が得られる.

　最後にコスト超過について評価する. 任意の γ′ > 0について考えると十分大きな nに対し
て γ′ > γn となることから

1

{
1

n
cn(X

n) > Γ + γ′
}
≤ 1

{
1

n
cn(X

n) > Γ + γn

}
(124)
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である. ここで,

p- lim sup
n→∞

1

{
1

n
cn(φn(UMn)) > Γ + γn

}
(125)

= inf

{
θ

∣∣∣∣∣ lim
n→∞

Pr

{
1

{
1

n
cn(φn(UMn

)) > Γ + γn

}
> θ

}
= 0

}
(126)

であり,ここでさらに θ = β + γ′ である場合について

Pr

{
1

{
1

n
cn(φn(UMn

)) > Γ + γn

}
> θ

}
(127)

=
1

Mn

Mn∑
m=1

1

{
1

{
1

n
cn(φn(UMn)) > Γ + γn

}
> β + γ′

}
(128)

≤ 1

Mn
(Mn − ⌈PXn(Sn)Mn⌉) (129)

= 1− PXn(Sn) = Pr{Xn /∈ Sn} (130)

= Pr

{
1

{
1

n
cn(x) > Γ + γn

}
> β + γn

}
(131)

≤ γn → 0 (132)

すなわち,

inf

{
θ

∣∣∣∣∣ lim
n→∞

Pr

{
1

{
1

n
cn(φn(UMn)) > Γ + γn

}
> θ

}
= 0

}
≤ β + γn (133)

となる. ここで, γn → 0より任意の δ > 0に対して十分大きなすべての nで γn < δ となる.

したがって

1

{
1

n
cn(φn(UMn

)) > Γ + γn

}
≥ 1

{
1

n
cn(φn(UMn

)) > Γ + δ

}
(134)

となる. よって

Pr

{
1

{
1

n
cn(φn(UMn)) > Γ + γn

}
> θ

}
≥ Pr

{
1

{
1

n
cn(φn(UMn)) > Γ + δ

}
> θ

}
(135)

である. これより

lim sup
n→∞

Pr

{
1

{
1

n
cn(φn(UMn

)) > Γ + γn

}
> θ

}
= 0

⇒ lim sup
n→∞

Pr

{
1

{
1

n
cn(φn(UMn)) > Γ + δ

}
> θ

}
= 0 (136)
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となることから

inf

{
θ

∣∣∣∣∣ lim
n→∞

Pr

{
1

{
1

n
cn(φn(UMn

)) > Γ + γn

}
> θ

}
= 0

}

≥ inf

{
θ

∣∣∣∣∣ lim
n→∞

Pr

{
1

{
1

n
cn(φn(UMn

)) > Γ + δ

}
> θ

}
= 0

}
(137)

が成り立つ. よって, (133)より

inf

{
θ

∣∣∣∣∣ lim
n→∞

Pr

{
1

{
1

n
cn(φn(UMn

)) > Γ + δ

}
> θ

}
= 0

}
≤ β (138)

となる. すなわち

p- lim sup
n→∞

1

{
1

n
cn(φn(UMn)) > Γ + δ

}
≤ β (139)

であり

c̄′β({φn(UMn)}∞n=1) ≤ Γ + δ (140)

となるが,δ > 0は任意だったので

c̄′β({φn(UMn
)}∞n=1) ≤ Γ (141)

を得る. (119), (123), (141) から Rは (ε,Γ, δ)-達成可能である. よって

sup
X:c̄′β(X)≤Γ

Iε(X;Y ) ≤ Cin,str(β,Γ) (142)

となる.

付録 B 補題 1の証明
補題 1 情報源 Xn, 整数 Mn, 正数 γ, 整数 K が与えられており, g(·) を任意の関数とする．
情報源 Xn を通信路の入力に接続したときの出力を Y n とする. すなわち Y n = Y n(Xn) と
する.

Bn(x) ≜
{
y ∈ Yn

∣∣∣∣ 1n log
Wn(y|x)
PY n(y)

≥ 1

n
logMn + γ

}
(143)

とおく.このとき符号語数がMn で

εn ≤ Pr
{
Y n /∈ Bn(Xn)

}
+Ke−nγ +

K2

Mn
, (144)

Pr{g(φn(UMn)) ≤ ξ} ≥ Pr{g(Xn) ≤ ξ} − 1

K
(145)
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となるような符号 (φn, ψn)が存在する.

〔証明〕

F (ξ) ≜ Pr
{
g(Xn) ≤ ξ

}
(146)

F−1(q) ≜ sup
{
ξ|F (ξ) ≤ q

}
(147)

ξ0 ≜ −∞ (148)

とおいたもとで k = 1, . . .に対して

ξk ≜ F−1

(
F
(
ξk−1 +

1

K

))
(149)

と定める.ここで, ξk =∞となる最初の k をK ′ と表し,K ′ ≤ K である.このとき,(149)より
k = 1, . . . ,K ′ − 1と任意の δ > 0に対して F (ξk + δ) > F (ξk−1) +

1
K であるが,F (·)は右連

続であることより

F (ξk) = lim
δ→0+

F (ξk + δ) ≥ F (ξ) + 1

K
(150)

となる.

さらに, k = 1, . . . ,K ′ に対して

S(k) ≜
{
x ∈ X

∣∣ξk−1 < g(x) ≤ ξk
}

(151)

S∪(k) ≜
⋃
i≤k

S(i) (152)

λk ≜ Pr
{
Y n /∈ Bn(Xn)|Xn ∈ S(k)

}
+
PXn

(
S∪(k)

)
PXn

(
S(k)

) e−nγ (153)

とおき,以下の手順で符号を構成していく.以降は繰り返しとなるため,繰り返しで戻るために
ここにラベル※を置く.

まず, k ← 1, m← 1として

W

(
Bn(x) \

⋃
m′<m

ψ−1(m′)|x
)
≥ 1− λk (154)
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なる x ∈ S(k)が存在するならば,そのような xを 1を選びm番目の符号 φ(m) ≜ xとする.

また,その復号領域を

ψn(m) ≜ Bn
(
φ(m)

)
\

⋃
m′<m

ψ−1(m′) (155)

とする. m← m+ 1として※に戻る.

もし,(154)なる x ∈ S(k)が存在しなければ, Lk ≜ m− 1とおく. Lk はこれまでに取れた符
号語の数を示す.また,

Dk ≜
⋃

m≤Lk

ψ−1(m) (156)

とおく.

　ここで,これまで何個の符号語が取れたのかを確認する.そのために

Pr
{
Y n ∈ Bn(Xn), Xn ∈ S(k)

}
(157)

= Pr
{
Y n ∈ Bn(Xn) ∩ Dk, X

n ∈ S(k)
}
+ Pr

{
Y n ∈ Bn(Xn) \ Dk, X

n ∈ S(k)
}

(158)

の右辺の各項を評価する.第 1項は

Pr
{
Y n ∈ Bn(Xn) ∩ Dk, X

n ∈ S(k)
}

(159)

≤ Pr
{
Y n ∈ Dk

}
(160)

=
∑

m≤Lk

PY n

(
ψ−1(m)

)
(161)

≤
∑

m≤Lk

PY n

(
Bn

(
φ(m)

))
(162)

=
∑

m≤Lk

∑
y∈Bn(φ(m))

PY n(y) (163)

≤
∑

m≤Lk

∑
y∈Bn(φ(m))

Wn
(
y|φ(x)

)
Mn

e−nγ (164)

=
∑

m≤Lk

Wn
(
Bn(φ(m))|φ(x)

)
Mn

e−nγ (165)

≤ Lk

Mn
e−nγ (166)
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と評価される.第 2項は

Pr
{
Y n ∈ Bn(Xn) \ Dk, X

n ∈ S(k)
}

(167)

=
∑

x∈S(k)

Pr
{
Y n ∈ Bn(Xn) \ Dk, X

n = x
}

(168)

=
∑

x∈S(k)

PXn(x)Wn
(
Bn(x) \ Dk|x

)
(169)

≤
∑

x∈S(k)

PXn(x)(1− λk) (170)

= PXn(S(k))(1− λk) (171)

と評価される.したがって

Pr
{
Y n ∈ Bn(Xn), Xn ∈ S(k)

}
(172)

≤ Lk

Mn
e−nγ + PXn(S(k))(1− λk) (173)

となるが,これに λk の定義 (153)を代入すると

Lk ≥MnPXn

(
S∪(k)

)
(174)

を得る. ここまで得られた Lk 個の符号語のうち

M (k) ≜
⌈
MnPXn

(
S∪(k)

)⌉
(175)

個を正式な符号語として採用する.つまり, m > M (k) に対して φ(m), ψ−1(m)を未定義状態
に戻す. ここで k < K ならばm←M (k) + 1, k ← k + 1として戻る. さもなくば手続きを終
了する. 以上で符号が構成できた.
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ここから符号の性能を評価する. まず復号誤り確率を評価する. M (0) ≜ 0とおくと

ε = 1− 1

Mn

Mn∑
m=1

Wn
(
ψ−1(m)|φ(m)

)
(176)

=
1

Mn

K∑
k=1

M(k)∑
m=M(k+1)+1

(
1−Wn

(
ψ−1(m)|φ(m)

))
(177)

≤ 1

Mn

K∑
k=1

M(k)∑
m=M(k+1)+1

λk (178)

=
1

Mn

K∑
k=1

(M (k) −M (k−1))λk (179)

=
1

Mn

K∑
k=1

(
MnPXn

(
S∪(k)

)
+ δk −MnPXn

(
S∪(k − 1)

)
− δk−1

)
λk (180)

=

K∑
k=1

PXn

(
S(k)

)
λk +

1

Mn

K∑
k=1

(δk − δk)λk (181)

を得る. ただし

δk ≜M (k) −MnPXn

(
S∪(k)

)
(182)

とおいた. 0 ≤ δk < 1であり,特に δK′ = 0である.

　 (182)の各項を評価する. 第 1項は

K′∑
k=1

PXn

(
S(k)

)
λk (183)

=

K′∑
k=1

(
Pr

{
Y n /∈ Bn(Xn), Xn ∈ S(k)

}
+ PXn

(
S∪(k)

))
(184)

≤ Pr
{
Y n /∈ Bn(Xn)

}
+Ke−nγ (185)

となる.第 2項の評価のために

PXn

(
S(k)

)
= Pr

{
ξk−1 < g(Xn) ≤ ξk

}
(186)

= F (ξk)− F (ξk−1) (187)

≥ 1

K
(188)

に注意すると

λk ≤ 1 +
1

PXn(S(k))
≤ 1 +K (189)
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が得られるので,第 2項は

1

Mn

K∑
k=1

(δk − δk)λk ≤
1

Mn

K′−1∑
k=1

λk (190)

≤ 1

Mn

K′−1∑
k=1

(1 +K) (191)

≤ K2

Mn
(192)

と評価さえる.したがって復号誤り確率は

ε ≤ Pr
{
Y n /∈ Bn(Xn)

}
+Ke−nγ +

K2

Mn
(193)

を満たす.

次に,得られた符号を用いて g
(
(UMn

)
)の分布を評価する. 任意の ξに対して ξk−1 ≤ ξ < ξk

なる k ∈ {1, . . . ,K ′}をとる. ξk の定義に注意すれば ξ < ξk は F (ξ) ≤ F (ξk−1) +
1
K を意味

する. すると,

Pr
{
g
(
φn(UMn)

)
≤ ξ

}
(194)

≥ Pr
{
g
(
φn(UMn)

)
≤ ξk−1

}
(195)

=
1

Mn

Mn∑
m=1

1
{
g
(
φn(UMn

)
)
≤ ξk−1

}
(196)

=
1

Mn

Mn∑
m=1

1
{
φn(m) ∈ S∪(k − 1)

}
(197)

=
Mk−1

Mn
=
⌈MnPXn

(
S∪(k − 1)

)
⌉

Mn
(198)

≥ PXn

(
S∪(k − 1)

)
= Pr

{
g(Xn) ≤ ξk−1

}
(199)

= F (ξk−1) ≥ F (ξ)−
1

K
(200)

= Pr
{
g(Xn) ≤ ξ

}
− 1

K
(201)

が成り立ち,

g
(
φn(UMn)

) d

≲ g(Xn) (202)

を満たす.
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