
信州大学工学部

学士論文

ルービックキューブに対する誤り訂正符号の
群構造を用いた効率的な探索について

指導教員 西新 幹彦 准教授

学科 電子情報システム工学科
学籍番号 22T2803D

氏名 猪又 佑太郎

2026年 2月 9日

目次
1 はじめに 1

2 ルービックキューブの基本 1

3 誤り訂正符号 2

3.1 通信路モデルと符号化 . 2

3.2 距離と誤り訂正能力 . 2

4 符号語探索アルゴリズム 4

4.1 状態グラフの探索 . 4

4.2 貪欲法による符号語選択 . 5

4.3 禁止リスト法による距離検証の高速化 . 5

4.4 部分群構造に着目した符号語選択（提案手法） 6

5 探索性能の評価 6

5.1 評価条件とパラメータ設定 . 7

5.2 結果 . 7

6 考察 8

6.1 部分群構造の有効性について . 8

6.2 禁止リスト法の限界性能 . 8

6.3 誤り訂正符号としての評価 . 9

7 まとめ 9

謝辞 10

参考文献 10

付録 A 探索プログラム 11

i

1 はじめに
誤り訂正符号は，通信路上のノイズによる情報の欠損を防ぐための基盤技術として広く利用
されている．一方で，世界的に有名な立体パズルであるルービックキューブは，その操作が群
の構造をなすことから，数学的な研究対象とされてきた [1, 2]．本研究は，この二つの領域を
融合し，ルービックキューブの巨大な状態空間を誤り訂正符号の新たな構成空間として活用す
る手法を提案するものである．
ルービックキューブのとりうる状態の総数は約 4.3× 1019 通りに達し，これは情報量にして
約 65ビットに相当する．これは，8文字の英数字（ASCII）パスワードが持つ情報量に匹敵
する．つまり，何気なく机に置かれたキューブは，それだけで一つのパスワードを表現してい
るとも言える．
膨大な状態空間内の各状態を点，状態間の遷移を引き起こす回転操作を辺と見なすことで，
ルービックキューブ上に巨大なグラフ構造（状態グラフ）を定義できる．本研究では，このグ
ラフ上の 2状態間の最短手数を「距離」として導入し，符号理論の枠組みを適用する．これに
より，互いに一定の距離以上離れた状態の集合を「1手操作の誤りを訂正可能な符号」として
構成することを目指す．
しかし，このような巨大なグラフ上で大規模な符号を構成する試みは，計算量的な困難に直
面する．符号語の候補が既存の符号語集合との最小距離条件を満たすか検証するプロセスは，
符号語数N に対して O(N2)の計算量を要し，単純な探索アルゴリズムでは大規模な符号の生
成が現実的な時間内に完了しない．
この計算量のボトルネックを解消するため，本研究ではルービックキューブが持つ「群構
造」に深く着目する．具体的には，特定の回転操作によって生成される部分群が，状態空間全
体の中で疎に分布するという代数的性質を利用する．この性質を利用して符号語の候補を戦略
的に選定することにより，距離検証における棄却率を下げ，実効的な探索効率を向上させる．
本論文では，この群構造に基づいた探索戦略と，ハッシュテーブルを用いた高速な検証手法を
組み合わせ，計算機資源の制約下で可能な限り大きな符号語集合を効率的に構成するアルゴリ
ズムを提案し，その有効性を検証する．

2 ルービックキューブの基本
本章では，ルービックキューブの物理的な構造，状態の定義について述べ，本研究で用いる
基本的な用語を定義する．
ルービックキューブは，各面が 3× 3 に分割された立方体型のパズルである．6つの面を持
ち，それぞれの面は 9 つの領域（本研究ではステッカーと呼称する）に分割されている．ス

1

テッカーは 6色存在し，それぞれの面を適切に回転させることで，6面すべての色を揃えるこ
とができる．本研究では，この揃った状態を基本状態 e と呼称する．
6つの面にはそれぞれ名前がついており，Up（上），Down（下），Right（右），Left（左），

Front（前），Back（後）からなる．慣例に従い，それぞれ U 面， D 面， R 面， L面， F

面， B 面と表す．ルービックキューブのある時点での色の配置を「状態」と呼ぶ．ルービッ
クキューブは面を回転させることによって膨大な数の状態を取りうる．その組み合わせ数は約
4.3 × 1019 通り（正確には 43, 252, 003, 274, 489, 856, 000 通り）であることが知られている
[1, 3]．log2(43252003274489856000) ≈ 65.23より，1つのルービックキューブが持つ情報量
は約 65ビットとなる．

3 誤り訂正符号
本章では，本研究の基礎となる誤り訂正符号の概念と，その数学的な性質について述べる．

3.1 通信路モデルと符号化
ディジタル通信やデータの記録において，通信路上のノイズやメディアの劣化により，情報
の一部が変化してしまう「誤り」が発生する場合がある．誤り訂正符号は，送信したい情報に
冗長性を持たせることで，受信側で誤りを検出し，訂正することを可能にする技術である．
送信したいメッセージを m とし，符号化器によって符号語 c に変換されるとする．通信路
を経て受信された語を r とする．ノイズが存在する場合，c と r は必ずしも一致しない．復
号器は，受信語 r から，最も確からしい送信語 c′ を推定し，元のメッセージ m′ を復元する．
このとき，m = m′ であれば誤り訂正が成功したことになる．

3.2 距離と誤り訂正能力
誤り訂正能力を議論する際には，符号語間の「近さ」や「遠さ」を定量的に評価する「距離」
の概念を導入するとよい．集合 V における任意の点 x, y, z ∈ V に対して，以下の 3つの条件
（距離の公理）を満たす関数 d(x, y) を距離関数と呼ぶ．

1. 非負性: d(x, y) ≥ 0 であり，d(x, y) = 0 となるのは x = y のときに限る．
2. 対称性: d(x, y) = d(y, x) が成立する．
3. 三角不等式: d(x, z) ≤ d(x, y) + d(y, z) が成立する．

一般的な符号理論では，等長 n の系列同士の異なるシンボルの個数を表す「ハミング距離」
が用いられることが多い．しかし，本研究ではルービックキューブの状態空間を扱うため，操
作の手数に基づいた距離を定義する必要がある．

2

まず，状態を変化させる「操作」を定義する．本研究では 1操作を「6つの面のいずれかの
1面を選び，その面を正面から見て時計回りもしくは反時計回りに 90度だけ回転させる」こ
ととする．この操作体系は Quarter Turn Metric(QTM)と呼ばれる．
この操作定義に基づき，本研究では状態 x から状態 y へ遷移するために必要な最小の操作
回数を距離 d(x, y) と定める．本論文ではこれを QT距離と呼ぶ．
符号 C は，とりうる全ての状態の集合 V の部分集合として定義される（C ⊂ V）．このと
き，符号 C に含まれる異なる 2つの符号語間の距離の最小値を，その符号の最小距離 dmin と
して，

dmin ≜ min{d(ci, cj) | ci, cj ∈ C, ci ̸= cj} (1)

と定義する．
受信した状態を最も距離が近い符号語に復号する最近傍復号を考えると， 符号 C が QT距
離において t 以下の誤りを訂正可能であるための必要十分条件は， 最小距離 dmin が

dmin ≥ 2t+ 1 (2)

を満たすことである．この条件は，任意の符号語 ci を中心とする半径 t の球（ci からの距離
が t 以下である状態の集合）を考えたとき， 異なる符号語 ci, cj を中心とする球が互いに交
わらないための条件に由来する. すなわち， ある状態が距離 t 以下の誤りによって変化した
としても， その状態が属する半径 t の球はただ一つに定まるため， 一意な復号が可能となる.

この関係は本研究で採用する QT距離においても成立する.

すなわち，1つの誤りを訂正するためには，t = 1 を代入して

dmin ≥ 3 (3)

を満たす符号を構成する必要がある．本研究では，ルービックキューブの状態空間上におい
て，任意の符号語間の QT 距離が 3 以上となるような集合 C を構成することを目的とする．
これは， ある符号語 c が 1手操作されて別の状態 r に変化したとしても（QT距離 1の誤り
が発生）， r から距離 1の範囲にある符号語は元の c 以外に存在しないため， 一意に復号可
能であることを意味する.

この誤り訂正能力と， 構成可能な符号語の数（符号サイズ |C|）にはトレードオフの関係が
存在する. dmin ≥ 3 という条件は， 任意の異なる 2つの符号語 ci, cj を中心とする半径 1の
球が， 互いに交わらないことを意味する. 定義した QTMにおいて， ある状態から 1手の操
作で到達可能な状態は 12通りであるため， 1つの符号語を中心とする半径 1の球に含まれる
状態の数は， 符号語自身を含めて 1 + 12 = 13 個となる.

ルービックキューブの状態グラフは各頂点の次数が一定であり，これらの球は全状態空間 V
の中に配置され， 互いに素であるから， 符号語の総数 |C| に関して以下の不等式（スフィア

3

パッキング限界）が成立する.
|C| · 1 + 12 ≤ |V| (4)

ここで |V| はルービックキューブの全状態数（約 4.3 × 1019）である. 実際に代入すると，
|C| ≤ 3.3 × 1018 とわかる．これは約 62 ビットに当たる．この式は， 誤り訂正能力（dmin）
を確保しようとすると，符号語数 |C| に上限が課せられることを示している. 本研究では，こ
の制約の中でできるだけ多くの符号語を持つ集合 C を効率的に構成することを目指す.

4 符号語探索アルゴリズム
前章までの議論に基づき，本章ではルービックキューブの状態空間を利用して dmin ≥ 3 の
符号を構成するための具体的なアルゴリズムについて述べる．本研究では，単純な貪欲法に加
え，計算効率を向上させるために群構造を利用した新たな探索手法を提案する．
本研究における符号構成の手順は，主に以下の二つのフェーズに大別される．

1. 状態グラフの探索フェーズ: ルービックキューブの状態グラフを探索し，基本状態 e か
らの最短距離が既知である状態のリスト L を構築する．

2. 符号語選択フェーズ: 構築された状態リスト L から，誤り訂正能力の条件を満たす符号
語の集合 C を選択し，そのサイズを最大化する．

状態グラフの探索フェーズでは，幅優先探索（Breadth First Search，以下 BFS）を用い，
各状態が既に見つかっているかを確認しながら，新規状態を状態リスト L に追加する．
一方，符号語の選択フェーズは，既存の符号語リスト C と，リスト L 内の新しい候補との
距離を検証するプロセスである．符号サイズを N = |C| とするとき，すべての符号語ペア間
の距離検証には O(N2) の計算量を要する．この計算量の急激な増加は，符号サイズ N を大
きくする上での深刻なボトルネックとなる．
そこで本章では，まず 4.1節で基礎となる状態グラフの探索手法について述べる．続く 4.2

節以降では，符号語選択における計算コストの問題に対処するためのアルゴリズムとして，基
本となる貪欲法，禁止リストを用いた高速化，および群構造を利用した候補絞り込みの 3つの
アプローチについて詳細に述べる．

4.1 状態グラフの探索
本研究では，ルービックキューブの状態グラフ G の探索アルゴリズムとして，BFSを採用
した．BFSは，探索の待機リストとしてキュー（FIFO）を用いるアルゴリズムであり，探索
開始ノード（基本状態 e）から QT距離が k のノードを全て探索し終えてから，次に QT距
離が k+ 1 のノードの探索を開始する．これにより，層ごとの網羅的な探索が保証される．し

4

たがって，あるノード x に初めて到達した際の探索経路長は，定義上，基本状態 e から x へ
の最短 QT 距離 d(e, x) となる．BFS の実装においては，各状態を数値化し，ハッシュテー
ブルを用いて既知の状態であるかを判定する．なお，探索範囲は計算機資源に応じて上限深度
Dmax で打ち切るものとする．

4.2 貪欲法による符号語選択
ベースラインとして，単純な貪欲法を用いる．この手法は，探索フェーズで得られた状態リ
スト L を，あらかじめ定められた順序（インデックス順）で走査し，条件を満たすものを順
次符号語として採用していく決定論的なアルゴリズムである．
具体的な手順は以下の通りである．

1. 初期化: 符号語集合 C を空集合とする．
2. 候補の選択: 状態リスト L から，まだ判定を行っていない状態 x をインデックスの昇
順に 1つ選択する．

3. 距離検証: 選択された候補 x と，既に採用された全ての符号語 c ∈ C との QT 距離
d(x, c) を BFSを用いて計算する．

4. 採用判定: 全ての c ∈ C に対して d(x, c) ≥ 3 が成立すれば x を採用し，そうでなけれ
ば棄却する．

5. 反復: リスト L の全ての候補に対して判定が終了するまで繰り返す．

4.3 禁止リスト法による距離検証の高速化
候補となる状態 x が条件を満たすか否かの判定を，都度の距離計算ではなく，禁止リスト
を用いた集合演算に置き換えることで高速化を図る．
ある符号語 c が採用された際，その c から QT距離 2 以下の範囲にある全ての状態は，以
降新たな符号語として採用できない．そこで，採用された符号語の近傍状態を禁止リスト F
に追加し，新たな候補 x が F に含まれるか否かで判定を行う．

F = {y ∈ G | ∃c ∈ C, d(c, y) < 3} (5)

この手法により，判定プロセスを平均計算量 O(1) のハッシュテーブル検索に帰着させること
ができるが，メモリ使用量が増大するというトレードオフが存在する．

5

4.4 部分群構造に着目した符号語選択（提案手法）
本研究では，大規模な符号構成を可能にするため，ルービックキューブの群構造を利用した
効率的な候補選択戦略を提案する．具体的には，特定の部分群 S に着目する．この S は，

S = R⟨U,F ⟩R−1 = {RgR−1 | g ∈ ⟨U,F ⟩} (6)

と定義される．ここで，⟨U,F ⟩ は U面と F面の回転によって生成される部分群であり，R は
R面回転による操作を表す．この操作によって生成される部分群 S の要素は，元の群構造を
保ちつつ，状態グラフ G 上では互いに QT距離がある程度離れた状態で埋め込まれることが
期待される．
この部分群 S の要素を符号語候補として優先的に探索することで，以下の効果を狙う．

• 棄却頻度の減少: S の要素が互いに QT距離を保つ傾向があれば，符号語候補が既存の
符号語との距離検証で棄却となる頻度が減少し，探索効率が向上する．

この戦略に基づくアルゴリズムでは，状態リスト L の中から，この部分群 S に属する状態の
みを抽出し，符号語選択を行う．

5 探索性能の評価
本章では，第 4章で提案した各アルゴリズムの評価方法について述べる．本評価の目的は，
単純な貪欲法と，提案手法である部分群構造を利用した探索法の性能を比較し，さらに禁止リ
スト法による高速化が符号構成数と計算資源に与える影響を定量的に明らかにすることであ
る．本評価は，大規模なグラフ探索と大量の距離計算を伴うため，計算機の処理能力が結果に
大きく影響する．使用したハードウェア仕様およびソフトウェア環境を表 1に示す．また，使
用したソースコードは付録 Aに示した．

表 1 実行環境および開発環境

項目 仕様
OS Microsoft Windows 11 Pro 24H2

CPU AMD Ryzen 7 7800X3D (8-Core, 4.2 GHz)

RAM DDR5-4800 64GB

Compiler GCC 15.2.0

Options -O3 -march=native -funroll-loops

6

5.1 評価条件とパラメータ設定
本節では，比較を行う 3つの手法と，それぞれのパラメータ設定について述べる．各手法に
おける探索深度 Dmax は，予備調査において現実的な実行時間およびメモリ容量（64GB）の
制約を超えない範囲で最大となるように設定した．設定一覧を表 2に示す．

表 2 比較手法とパラメータ設定

手法名称 Dmax 特徴
(1) 単純な貪欲法 5 全状態空間を対象，貪欲選択
(2) 部分群法 16 共役部分群内のみ探索
(3) 部分群法 +禁止リスト 26 手法 (2)を禁止リストで高速化

1. 単純な貪欲法 (Dmax = 5):

ルービックキューブの全状態空間を対象とするベースライン手法である．全状態空間に
おいては，QT距離が 1増えるごとに状態数が指数関数的に増大するため，Dmax = 5

と設定した．これ以上の深さでは候補リスト L が膨大となり，計算が現実的な時間内
で終了しないためである．

2. 部分群法 (Dmax = 16):

第 4章で提案した，特定の共役部分群に属する状態のみを候補とする手法である．部分
群内の状態分布は疎であるため，十分な数の候補を得るために探索範囲を Dmax = 16

まで拡張した．
3. 部分群法+禁止リスト (Dmax = 26):

手法 (2)に加え，禁止リスト法を適用して距離検証を高速化した手法である．検証の高
速化により，さらに多くの候補状態を処理可能となるため，メモリ容量の上限に達しな
い最大の深度として Dmax = 26 を設定した．

5.2 結果
各手法の性能を定量的に評価するため，以下の 2つの指標を計測した．

• 符号語数 N : 最終的に構成された符号集合 C の要素数．本研究の主目的であり，この
値が大きいほど優れた符号構成法であると言える．

• 実行時間: プログラムの開始から符号構成が完了するまでの時間．

表 3に，各手法における探索候補数，最終的に得られた符号語数 N，および実行時間を示す．

7

手法 (1) においては，計算時間の都合上 Dmax = 5 で探索を打ち切った．一方，手法 (2) お
よび (3) では，計算資源の許す範囲でそれぞれ Dmax = 16 および Dmax = 26 まで探索を
行った．

表 3 各手法における結果

手法 候補状態数 |L| 符号語数 N 実行時間 (秒)

(1) 単純な貪欲法 (Dmax = 5) 105,046 8,960 706.995

(2) 部分群法 (Dmax = 16) 152,076 152,076 415.214

(3) 部分群法 +禁止リスト (Dmax = 26) 4,787,847 4,787,847 92.9

6 考察
6.1 部分群構造の有効性について
候補状態集合 L に対する最終的な符号語数 N の割合（採用率）に着目して比較を行うと，
手法 (1) が約 8.53% に留まったのに対し，手法 (2) および手法 (3) では 100% を達成した．
本研究の探索範囲内において，部分群 S に属する状態は一度も棄却されることなく，全て符号
語として採用された．この結果は，当該部分群 S が全状態空間内において，互いに距離 3以上
を保って疎に分布している可能性があることを示唆する．また，アルゴリズムの観点からは，
距離検証による棄却という計算コストの無駄を排除できたことを意味し，探索効率の向上に寄
与したと言える．

6.2 禁止リスト法の限界性能
手法 (3)は実行時間の面では圧倒的に高速であった．表 3に示す条件（Dmax = 26）では，
約 478万個の符号語をわずか 92.9秒で構成することに成功している．
さらに，本研究では計算機の物理メモリ（64GB）を最大限まで利用した場合の限界性能に
ついても検証を行った．探索深度を Dmax = 29 まで拡張し，禁止リストのサイズがメモリ上
限に達してスワッピングが発生するまで探索を行った結果，最終的に 43,074,266個の符号語
を構成することに成功した．これ以上の探索はスワッピングの頻度増加による急激な速度低下
を招いたことから，本アルゴリズムにおける符号語数の上限は，計算時間ではなくメモリ容量
によって律速されることがわかる．

8

6.3 誤り訂正符号としての評価
本研究で得られた最大の符号語数は，前述の通り N ≈ 4.3 × 107 であった．これは，ルー
ビックキューブの全状態空間 4.3 × 1019 に対しては依然としてわずかな割合であるが，符号
間 QT距離 3 を保証する集合（1誤り訂正符号）としては，グラフ探索アプローチで構成され
たものとして大規模なものである．
情報理論の観点からこの結果を評価すると，

⌊log2(43, 074, 266)⌋ = 25 (7)

より，本手法を用いることで 25ビットの情報を，1手の操作ミスを訂正可能な状態でルービッ
クキューブ上に記録できることを意味する．

7 まとめ
本研究では，ルービックキューブの状態空間を通信路とみなし，任意の 1操作による誤りを
訂正可能な符号，すなわち符号語間の最小距離が 3以上となる符号語集合を構成することを目
的とした．
巨大なグラフ上での符号構成において，単純な貪欲法では符号語数 N に対して O(N2) の
計算量を要し，大規模な符号の探索が困難であることが課題であった．これに対し本研究で
は，計算効率を向上させるために以下の二つのアプローチを提案・実装した．第一に，ルー
ビックキューブの持つ代数的な群構造に着目し，特定の共役部分群に属する状態を優先的に探
索候補とする手法である．第二に，ハッシュテーブルを用いた禁止リスト法により，グラフ探
索を伴う重い距離計算を，定数時間 O(1) のメモリアクセスに置き換える手法である．
性能評価の結果，単純な貪欲法と比較して，提案手法は高い探索効率を示した．特に部分群
法においては，候補とした状態が既存の符号語と衝突することなく 100%の確率で採用され，
群構造を利用して探索空間を適切に限定することの有効性が実証された．また，禁止リスト法
を併用することで，約 4300万個（4.3× 107）の符号語を持つ 1誤り訂正符号の構成に成功し
た．これは情報量に換算すると約 25ビットに相当し，ルービックキューブ上に 25ビットの情
報を，1手の操作ミスを許容できる形式で埋め込み可能であることを意味する．
本研究の成果は，パズルという親しみやすい題材を通して符号理論の概念を具現化しただけ
でなく，巨大なグラフにおける符号探索問題に対して，対象の持つ対称性や代数的構造を利用
することが有効であることを示した点において意義がある．

9

謝辞
本研究を進めるにあたり，終始懇切丁寧なご指導とご鞭撻を賜りました，指導教員である信
州大学工学部 西新 幹彦 准教授に深く感謝の意を表します．先生には，研究テーマの選定から
アルゴリズムの構築に関して多大なるご助言とご配慮をいただきました．

参考文献
[1] David Singmaster. Notes on Rubik’s ’Magic Cube’. Enslow Publishers, 1981.

[2] Tom Davis. Group Theory via Rubik’s Cube. geometer.org, 2006.

[3] T. Rokicki, H. Kociemba, M. Davidson, and J. Dethridge. The Diameter of the Ru-

bik’s Cube Group is Twenty. SIAM Review, 56(4):645–670, 2014.

10

付録 A 探索プログラム
本研究で使用した，ルービックキューブの探索を行う C言語プログラムのソースコードを
以下に示す．

1 #include <stdio.h>

2 #include <string.h>

3 #include <time.h>

4 #include <ctype.h>

5 #include <omp.h>

6 #include "uthash.h"

7 #define U_FACE_IDX 0 // 上面 (Up)

8 #define L_FACE_IDX 1 // 左面 (Left)

9 #define F_FACE_IDX 2 // 正面 (Front)

10 #define R_FACE_IDX 3 // 右面 (Right)

11 #define B_FACE_IDX 4 // 背面 (Back)

12 #define D_FACE_IDX 5 // 下面 (Down)

13 typedef struct Cubedata{

14 char cube [6][9];

15 char rotation [40];

16 char depth;

17 }Cubedata;

18 char rotationindex [12]="UFRDBLufrdbl";

19 void simpleprintcube(char cube [6][9]){

20 for(int i=0;i<6;i++){

21 for(int j=0;j<9;j++){

22 printf("%d,",cube[i][j]);

23 }

24 printf("\n");

25 }

26 return;

27 }

28 void printcube(char cube [6][9]){

29 for(int i=0;i<9;i++){

30 printf("%02d ",cube [0][i]);

31 if(i%3==2) printf("\n");

32 }

33 for(int i=0;i<36;i++){

34 printf("%02d ",cube[(i/3) %4+1][((i/12) *3)+i%3]);

35 if(i%12==11) printf("\n");

36 }

37 for(int i=0;i<9;i++){

38 printf("%02d ",cube [5][i]);

39 if(i%3==2) printf("\n");

40 }

41 return;

42 }

43 char printcolor(int num){

11

44 switch(num/9){

45 case 0: return ’W’;

46 case 1: return ’R’;

47 case 2: return ’B’;

48 case 3: return ’O’;

49 case 4: return ’G’;

50 case 5: return ’Y’;

51 default:return ’e’;

52 }

53 return ’e’;

54 }

55 void printcubecolor(char cube [6][9]){

56 for(int i=0;i<9;i++){

57 printf("%c",printcolor(cube [0][i]));

58 if(i%3==2) printf("\n");

59 }

60 for(int i=0;i<36;i++){

61 printf("%c",printcolor(cube[(i/3) %4+1][((i/12) *3)+i%3]));

62 if(i%12==11) printf("\n");

63 }

64 for(int i=0;i<9;i++){

65 printf("%c",printcolor(cube [5][i]));

66 if(i%3==2) printf("\n");

67 }

68 }

69 void printcubeh(char cube [6][9]){

70 for(int i=0;i<9;i++){

71 printf("%02d ",cube [0][i]+1);

72 if(i%3==2) printf("\n");

73 }

74 for(int i=0;i<36;i++){

75 printf("%02d ",cube[(i/3) %4+1][((i/12) *3)+i%3]+1);

76 if(i%12==11) printf("\n");

77 }

78 for(int i=0;i<9;i++){

79 printf("%02d ",cube [5][i]+1);

80 if(i%3==2) printf("\n");

81 }

82 return;

83 }

84 void copycube(const char src [6][9] , char dist [6][9]){

85 for(int i=0;i<6;i++){

86 for(int j=0;j<9;j++){

87 dist[i][j]=src[i][j];

88 }

89 }

90 return;

91 }

92 void resetcube(char cube [6][9]){

93 for(int i=0;i<6;i++){

12

94 for(int j=0;j<9;j++){

95 cube[i][j]=i;

96 }

97 }

98 return;

99 }

100 void rotate_u(char cube [6][9]) {

101 char tempcube [6][9];

102 copycube(cube , tempcube);

103 cube[U_FACE_IDX][0] = tempcube[U_FACE_IDX][6];

104 cube[U_FACE_IDX][1] = tempcube[U_FACE_IDX][3];

105 cube[U_FACE_IDX][2] = tempcube[U_FACE_IDX][0];

106 cube[U_FACE_IDX][3] = tempcube[U_FACE_IDX][7];

107 cube[U_FACE_IDX][5] = tempcube[U_FACE_IDX][1];

108 cube[U_FACE_IDX][6] = tempcube[U_FACE_IDX][8];

109 cube[U_FACE_IDX][7] = tempcube[U_FACE_IDX][5];

110 cube[U_FACE_IDX][8] = tempcube[U_FACE_IDX][2];

111

112 int src_faces [] = {F_FACE_IDX , R_FACE_IDX , B_FACE_IDX , L_FACE_IDX };

113 int dst_faces [] = {L_FACE_IDX , F_FACE_IDX , R_FACE_IDX , B_FACE_IDX };

114

115

116

117 for (int i = 0; i < 4; ++i) {

118 for (int j = 0; j < 3; ++j) { // ステッカーインデックス 0, 1, 2 各面の上段()

119 cube[dst_faces[i]][j] = tempcube[src_faces[i]][j];

120 }

121 }

122 return;

123 }

124 void rotate_u_prime(char cube [6][9]){

125 char tempcube [6][9];

126 copycube(cube , tempcube);

127 cube[U_FACE_IDX][0] = tempcube[U_FACE_IDX][2];

128 cube[U_FACE_IDX][1] = tempcube[U_FACE_IDX][5];

129 cube[U_FACE_IDX][2] = tempcube[U_FACE_IDX][8];

130 cube[U_FACE_IDX][3] = tempcube[U_FACE_IDX][1];

131 cube[U_FACE_IDX][5] = tempcube[U_FACE_IDX][7];

132 cube[U_FACE_IDX][6] = tempcube[U_FACE_IDX][0];

133 cube[U_FACE_IDX][7] = tempcube[U_FACE_IDX][3];

134 cube[U_FACE_IDX][8] = tempcube[U_FACE_IDX][6];

135

136 int src_faces [] = {L_FACE_IDX , F_FACE_IDX , R_FACE_IDX , B_FACE_IDX };

137 int dst_faces [] = {F_FACE_IDX , R_FACE_IDX , B_FACE_IDX , L_FACE_IDX };

138

139

140 for (int i = 0; i < 4; ++i) {

141 for (int j = 0; j < 3; ++j) { // ステッカーインデックス 0, 1, 2 各面の上段()

142 cube[dst_faces[i]][j] = tempcube[src_faces[i]][j];

143 }

13

144 }

145 return;

146 }

147 void rotate_f(char cube [6][9]) {

148 char tempcube [6][9];

149 copycube(cube , tempcube);

150 cube[F_FACE_IDX][0] = tempcube[F_FACE_IDX][6];

151 cube[F_FACE_IDX][1] = tempcube[F_FACE_IDX][3];

152 cube[F_FACE_IDX][2] = tempcube[F_FACE_IDX][0];

153 cube[F_FACE_IDX][3] = tempcube[F_FACE_IDX][7];

154 cube[F_FACE_IDX][5] = tempcube[F_FACE_IDX][1];

155 cube[F_FACE_IDX][6] = tempcube[F_FACE_IDX][8];

156 cube[F_FACE_IDX][7] = tempcube[F_FACE_IDX][5];

157 cube[F_FACE_IDX][8] = tempcube[F_FACE_IDX][2];

158

159 int src_faces [] = {U_FACE_IDX , R_FACE_IDX , D_FACE_IDX , L_FACE_IDX };

160 int dst_faces [] = {R_FACE_IDX , D_FACE_IDX , L_FACE_IDX , U_FACE_IDX };

161

162 cube [3][0]= tempcube [0][6];

163 cube [3][3]= tempcube [0][7];

164 cube [3][6]= tempcube [0][8];

165

166 cube [5][2]= tempcube [3][0];

167 cube [5][1]= tempcube [3][3];

168 cube [5][0]= tempcube [3][6];

169

170 cube [1][8]= tempcube [5][2];

171 cube [1][5]= tempcube [5][1];

172 cube [1][2]= tempcube [5][0];

173

174 cube [0][6]= tempcube [1][8];

175 cube [0][7]= tempcube [1][5];

176 cube [0][8]= tempcube [1][2];

177

178 return;

179 }

180 void rotate_f_prime(char cube [6][9]){

181 char tempcube [6][9];

182 copycube(cube , tempcube);

183 cube[F_FACE_IDX][0] = tempcube[F_FACE_IDX][2];

184 cube[F_FACE_IDX][1] = tempcube[F_FACE_IDX][5];

185 cube[F_FACE_IDX][2] = tempcube[F_FACE_IDX][8];

186 cube[F_FACE_IDX][3] = tempcube[F_FACE_IDX][1];

187 cube[F_FACE_IDX][5] = tempcube[F_FACE_IDX][7];

188 cube[F_FACE_IDX][6] = tempcube[F_FACE_IDX][0];

189 cube[F_FACE_IDX][7] = tempcube[F_FACE_IDX][3];

190 cube[F_FACE_IDX][8] = tempcube[F_FACE_IDX][6];

191

192 int src_faces [] = {R_FACE_IDX , D_FACE_IDX , L_FACE_IDX , U_FACE_IDX };

193 int dst_faces [] = {U_FACE_IDX , R_FACE_IDX , D_FACE_IDX , L_FACE_IDX };

14

194

195

196 cube [0][6] = tempcube [3][0];

197 cube [0][7] = tempcube [3][3];

198 cube [0][8] = tempcube [3][6];

199

200 cube [1][8] = tempcube [0][6];

201 cube [1][5] = tempcube [0][7];

202 cube [1][2] = tempcube [0][8];

203

204 cube [3][0] = tempcube [5][2];

205 cube [3][3] = tempcube [5][1];

206 cube [3][6] = tempcube [5][0];

207

208 cube [5][2] = tempcube [1][8];

209 cube [5][1] = tempcube [1][5];

210 cube [5][0] = tempcube [1][2];

211

212 return;

213 }

214 void rotate_r(char cube [6][9]) {

215 char tempcube [6][9];

216 copycube(cube , tempcube);

217 cube[R_FACE_IDX][0] = tempcube[R_FACE_IDX][6];

218 cube[R_FACE_IDX][1] = tempcube[R_FACE_IDX][3];

219 cube[R_FACE_IDX][2] = tempcube[R_FACE_IDX][0];

220 cube[R_FACE_IDX][3] = tempcube[R_FACE_IDX][7];

221 cube[R_FACE_IDX][5] = tempcube[R_FACE_IDX][1];

222 cube[R_FACE_IDX][6] = tempcube[R_FACE_IDX][8];

223 cube[R_FACE_IDX][7] = tempcube[R_FACE_IDX][5];

224 cube[R_FACE_IDX][8] = tempcube[R_FACE_IDX][2];

225

226 int src_faces [] = {U_FACE_IDX , B_FACE_IDX , D_FACE_IDX , F_FACE_IDX };

227 int dst_faces [] = {B_FACE_IDX , D_FACE_IDX , F_FACE_IDX , U_FACE_IDX };

228

229 for (int i = 0; i < 4; ++i) {

230 for (int j = 0; j < 3; ++j) { // ステッカーインデックス 0, 1, 2 各面の上段()

231 if(dst_faces[i]== B_FACE_IDX)cube[dst_faces[i]][6-j*3] = tempcube

[src_faces[i]][j*3+2];

232 else if(src_faces[i]== B_FACE_IDX)cube[dst_faces[i]][j*3+2] =

tempcube[src_faces[i]][6-j*3];

233 else cube[dst_faces[i]][j*3+2] = tempcube[src_faces[i]][j*3+2];

234 }

235 }

236 return;

237 }

238 void rotate_r_prime(char cube [6][9]) {

239 char tempcube [6][9];

240 copycube(cube , tempcube);

241 cube[R_FACE_IDX][0] = tempcube[R_FACE_IDX][2];

15

242 cube[R_FACE_IDX][1] = tempcube[R_FACE_IDX][5];

243 cube[R_FACE_IDX][2] = tempcube[R_FACE_IDX][8];

244 cube[R_FACE_IDX][3] = tempcube[R_FACE_IDX][1];

245 cube[R_FACE_IDX][5] = tempcube[R_FACE_IDX][7];

246 cube[R_FACE_IDX][6] = tempcube[R_FACE_IDX][0];

247 cube[R_FACE_IDX][7] = tempcube[R_FACE_IDX][3];

248 cube[R_FACE_IDX][8] = tempcube[R_FACE_IDX][6];

249

250 int src_faces [] = {B_FACE_IDX , D_FACE_IDX , F_FACE_IDX , U_FACE_IDX };

251 int dst_faces [] = {U_FACE_IDX , B_FACE_IDX , D_FACE_IDX , F_FACE_IDX };

252

253 for (int i = 0; i < 4; ++i) {

254 for (int j = 0; j < 3; ++j) { // ステッカーインデックス 0, 1, 2 各面の上段()

255 if(dst_faces[i]== B_FACE_IDX)cube[dst_faces[i]][6-j*3] = tempcube

[src_faces[i]][j*3+2];

256 else if(src_faces[i]== B_FACE_IDX)cube[dst_faces[i]][j*3+2] =

tempcube[src_faces[i]][6-j*3];

257 else cube[dst_faces[i]][j*3+2] = tempcube[src_faces[i]][j*3+2];

258 }

259 }

260 return;

261 }

262 void rotate_l(char cube [6][9]) {

263 char tempcube [6][9];

264 copycube(cube , tempcube);

265 cube[L_FACE_IDX][0] = tempcube[L_FACE_IDX][6];

266 cube[L_FACE_IDX][1] = tempcube[L_FACE_IDX][3];

267 cube[L_FACE_IDX][2] = tempcube[L_FACE_IDX][0];

268 cube[L_FACE_IDX][3] = tempcube[L_FACE_IDX][7];

269 cube[L_FACE_IDX][5] = tempcube[L_FACE_IDX][1];

270 cube[L_FACE_IDX][6] = tempcube[L_FACE_IDX][8];

271 cube[L_FACE_IDX][7] = tempcube[L_FACE_IDX][5];

272 cube[L_FACE_IDX][8] = tempcube[L_FACE_IDX][2];

273

274 int src_faces [] = {U_FACE_IDX , F_FACE_IDX , D_FACE_IDX , B_FACE_IDX };

275 int dst_faces [] = {F_FACE_IDX , D_FACE_IDX , B_FACE_IDX , U_FACE_IDX };

276

277 for (int i = 0; i < 4; ++i) {

278 for (int j = 0; j < 3; ++j) { // ステッカーインデックス 0, 1, 2 各面の上段()

279 if(dst_faces[i]== B_FACE_IDX)cube[dst_faces[i]][8-j*3] = tempcube

[src_faces[i]][j*3];

280 else if(src_faces[i]== B_FACE_IDX)cube[dst_faces[i]][j*3] =

tempcube[src_faces[i]][8-j*3];

281 else cube[dst_faces[i]][j*3] = tempcube[src_faces[i]][j*3];

282 }

283 }

284 return;

285 }

286 void rotate_l_prime(char cube [6][9]) {

287 char tempcube [6][9];

16

288 copycube(cube , tempcube);

289 cube[L_FACE_IDX][0] = tempcube[L_FACE_IDX][2];

290 cube[L_FACE_IDX][1] = tempcube[L_FACE_IDX][5];

291 cube[L_FACE_IDX][2] = tempcube[L_FACE_IDX][8];

292 cube[L_FACE_IDX][3] = tempcube[L_FACE_IDX][1];

293 cube[L_FACE_IDX][5] = tempcube[L_FACE_IDX][7];

294 cube[L_FACE_IDX][6] = tempcube[L_FACE_IDX][0];

295 cube[L_FACE_IDX][7] = tempcube[L_FACE_IDX][3];

296 cube[L_FACE_IDX][8] = tempcube[L_FACE_IDX][6];

297

298 int src_faces [] = {F_FACE_IDX , D_FACE_IDX , B_FACE_IDX , U_FACE_IDX };

299 int dst_faces [] = {U_FACE_IDX , F_FACE_IDX , D_FACE_IDX , B_FACE_IDX };

300

301 for (int i = 0; i < 4; ++i) {

302 for (int j = 0; j < 3; ++j) { // ステッカーインデックス 0, 1, 2 各面の上段()

303 if(dst_faces[i]== B_FACE_IDX)cube[dst_faces[i]][8-j*3] = tempcube

[src_faces[i]][j*3];

304 else if(src_faces[i]== B_FACE_IDX)cube[dst_faces[i]][j*3] =

tempcube[src_faces[i]][8-j*3];

305 else cube[dst_faces[i]][j*3] = tempcube[src_faces[i]][j*3];

306 }

307 }

308 return;

309 }

310 void rotate_d(char cube [6][9]) {

311 char tempcube [6][9];

312 copycube(cube , tempcube);

313 cube[D_FACE_IDX][0] = tempcube[D_FACE_IDX][6];

314 cube[D_FACE_IDX][1] = tempcube[D_FACE_IDX][3];

315 cube[D_FACE_IDX][2] = tempcube[D_FACE_IDX][0];

316 cube[D_FACE_IDX][3] = tempcube[D_FACE_IDX][7];

317 cube[D_FACE_IDX][5] = tempcube[D_FACE_IDX][1];

318 cube[D_FACE_IDX][6] = tempcube[D_FACE_IDX][8];

319 cube[D_FACE_IDX][7] = tempcube[D_FACE_IDX][5];

320 cube[D_FACE_IDX][8] = tempcube[D_FACE_IDX][2];

321

322

323 int src_faces [] = {L_FACE_IDX , F_FACE_IDX , R_FACE_IDX , B_FACE_IDX };

324 int dst_faces [] = {F_FACE_IDX , R_FACE_IDX , B_FACE_IDX , L_FACE_IDX };

325

326 for (int i = 0; i < 4; ++i) {

327 for (int j = 0; j < 3; ++j) { // ステッカーインデックス 0, 1, 2 各面の上段()

328 cube[dst_faces[i]][j+6] = tempcube[src_faces[i]][j+6];

329 }

330 }

331 return;

332 }

333 void rotate_d_prime(char cube [6][9]) {

334 char tempcube [6][9];

335 copycube(cube , tempcube);

17

336 cube[D_FACE_IDX][0] = tempcube[D_FACE_IDX][2];

337 cube[D_FACE_IDX][1] = tempcube[D_FACE_IDX][5];

338 cube[D_FACE_IDX][2] = tempcube[D_FACE_IDX][8];

339 cube[D_FACE_IDX][3] = tempcube[D_FACE_IDX][1];

340 cube[D_FACE_IDX][5] = tempcube[D_FACE_IDX][7];

341 cube[D_FACE_IDX][6] = tempcube[D_FACE_IDX][0];

342 cube[D_FACE_IDX][7] = tempcube[D_FACE_IDX][3];

343 cube[D_FACE_IDX][8] = tempcube[D_FACE_IDX][6];

344

345 int src_faces [] = {F_FACE_IDX , R_FACE_IDX , B_FACE_IDX , L_FACE_IDX };

346 int dst_faces [] = {L_FACE_IDX , F_FACE_IDX , R_FACE_IDX , B_FACE_IDX };

347

348 for (int i = 0; i < 4; ++i) {

349 for (int j = 0; j < 3; ++j) { // ステッカーインデックス 0, 1, 2 各面の上段()

350 cube[dst_faces[i]][j+6] = tempcube[src_faces[i]][j+6];

351 }

352 }

353 return;

354 }

355 void rotate_b(char cube [6][9]){

356 char tempcube [6][9];

357 copycube(cube , tempcube);

358

359

360 cube[B_FACE_IDX][0] = tempcube[B_FACE_IDX][6];

361 cube[B_FACE_IDX][1] = tempcube[B_FACE_IDX][3];

362 cube[B_FACE_IDX][2] = tempcube[B_FACE_IDX][0];

363 cube[B_FACE_IDX][3] = tempcube[B_FACE_IDX][7];

364 cube[B_FACE_IDX][5] = tempcube[B_FACE_IDX][1];

365 cube[B_FACE_IDX][6] = tempcube[B_FACE_IDX][8];

366 cube[B_FACE_IDX][7] = tempcube[B_FACE_IDX][5];

367 cube[B_FACE_IDX][8] = tempcube[B_FACE_IDX][2];

368 int src_faces [] = {R_FACE_IDX , D_FACE_IDX , L_FACE_IDX , U_FACE_IDX };

369 int dst_faces [] = {U_FACE_IDX , R_FACE_IDX , D_FACE_IDX , L_FACE_IDX };

370

371 cube [0][2]= tempcube [3][8];

372 cube [3][8]= tempcube [5][6];

373 cube [5][6]= tempcube [1][0];

374 cube [1][0]= tempcube [0][2];

375

376 cube [0][1]= tempcube [3][5];

377 cube [3][5]= tempcube [5][7];

378 cube [5][7]= tempcube [1][3];

379 cube [1][3]= tempcube [0][1];

380

381 cube [0][0]= tempcube [3][2];

382 cube [3][2]= tempcube [5][8];

383 cube [5][8]= tempcube [1][6];

384 cube [1][6]= tempcube [0][0];

385 return;

18

386 }

387 void rotate_b_prime(char cube [6][9]) {

388 char tempcube [6][9];

389 copycube(cube , tempcube);

390 cube[B_FACE_IDX][0] = tempcube[B_FACE_IDX][2];

391 cube[B_FACE_IDX][1] = tempcube[B_FACE_IDX][5];

392 cube[B_FACE_IDX][2] = tempcube[B_FACE_IDX][8];

393 cube[B_FACE_IDX][3] = tempcube[B_FACE_IDX][1];

394 cube[B_FACE_IDX][5] = tempcube[B_FACE_IDX][7];

395 cube[B_FACE_IDX][6] = tempcube[B_FACE_IDX][0];

396 cube[B_FACE_IDX][7] = tempcube[B_FACE_IDX][3];

397 cube[B_FACE_IDX][8] = tempcube[B_FACE_IDX][6];

398

399 int src_faces [] = {U_FACE_IDX , R_FACE_IDX , D_FACE_IDX , L_FACE_IDX };

400 int dst_faces [] = {R_FACE_IDX , D_FACE_IDX , L_FACE_IDX , U_FACE_IDX };

401

402 cube [0][2]= tempcube [1][0];

403 cube [1][0]= tempcube [5][6];

404 cube [5][6]= tempcube [3][8];

405 cube [3][8]= tempcube [0][2];

406

407 cube [0][1]= tempcube [1][3];

408 cube [1][3]= tempcube [5][7];

409 cube [5][7]= tempcube [3][5];

410 cube [3][5]= tempcube [0][1];

411

412 cube [0][0]= tempcube [1][6];

413 cube [1][6]= tempcube [5][8];

414 cube [5][8]= tempcube [3][2];

415 cube [3][2]= tempcube [0][0];

416 return;

417 }

418 void rotate_char(char cube [6][9] , char rotation[],int len){

419 for(int i=0;i<len;i++){

420 switch(rotation[i]){

421 case ’U’:rotate_u(cube);break;

422 case ’u’:rotate_u_prime(cube);break;

423 case ’R’:rotate_r(cube);break;

424 case ’r’:rotate_r_prime(cube);break;

425 case ’F’:rotate_f(cube);break;

426 case ’f’:rotate_f_prime(cube);break;

427 case ’D’:rotate_d(cube);break;

428 case ’d’:rotate_d_prime(cube);break;

429 case ’L’:rotate_l(cube);break;

430 case ’l’:rotate_l_prime(cube);break;

431 case ’B’:rotate_b(cube);break;

432 case ’b’:rotate_b_prime(cube);break;

433 default:printf("[Error] rotate error: undefined rotation");break

;

434 }

19

435 }

436 return;

437 }

438 //char rotationindex [12]=" UFRDBLufrdbl ";

439 char lut_2t [156][6][9];

440 int lut_create (){

441 for(int i=0;i<12;i++){

442 char cube_state [6][9];

443 resetcube(cube_state);

444 rotate_char(cube_state ,& rotationindex[i],1);

445 copycube(cube_state ,lut_2t[i]);

446

447 for(int j=0;j<12;j++){

448 resetcube(cube_state);

449 rotate_char(cube_state ,& rotationindex[i],1);

450 rotate_char(cube_state ,& rotationindex[j],1);

451 copycube(cube_state ,lut_2t [12+i*12+j]);

452 }

453 }

454

455 return 0;

456 }

457 void rotate_char_lut(char cube [6][9] , char rotation []){

458 char tempcube [6][9];

459 copycube(cube ,tempcube);

460 int num=0;

461 for(int i=0;i<12;i++){

462 if(rotation [0]== rotationindex[i]&& strlen(rotation)==1){

463 num=i;break;

464 }

465 for(int j=0;j<12;j++){

466 if(rotation [0]== rotationindex[i]&& rotation [1]== rotationindex[j])

{

467 num =12+i*12+j;

468 }

469 }

470 }

471 for(int i=0;i<6;i++){

472 for(int j=0;j<9;j++){

473 cube[i][j]= tempcube[lut_2t[num][i][j]/9][lut_2t[num][i][j]%9];

474 }

475 }

476

477 return;

478 }

479 void cubedata_print(Cubedata data[],int indexnum){

480 printcube(data[indexnum].cube);

481 printf(" data[%d],rotation =’%s’,depth =%d\n",indexnum ,data[indexnum].

rotation ,data[indexnum].depth);

482 return;

20

483 }

484 void cubedata_list(Cubedata data[],int len){

485 for(int i=0;i<len;i++){

486 printf("data[%d],rotation =’%s’,depth =%d\n",i,data[i].rotation ,data[i

]. depth);

487 }

488 }

489 int cubedata_allclear(Cubedata data[],int len){

490 for(int i=0;i<len;i++){

491 resetcube(data[i].cube);

492 for(int j=0;j<40;j++) data[i]. rotation[j]=’\0’;

493 data[i].depth =-1;

494 }

495 return 0;

496 }

497 int cubedata_delete(Cubedata data[],int indexnum){

498 resetcube(data[indexnum].cube);

499 for(int j=0;j<40;j++) data[indexnum]. rotation[j]=’\0’;

500 data[indexnum]. depth=-1;

501

502 return 0;

503 }

504 void cubedata_write(Cubedata data[],int indexnum ,Cubedata src){

505 copycube(src.cube ,data[indexnum].cube);

506 strcpy(data[indexnum].rotation ,src.rotation);

507 data[indexnum]. depth=src.depth;

508 return;

509 }

510 Cubedata cubedata_create(const char cube [6][9] , char rotation[],char depth){

511 Cubedata data;

512 copycube(cube ,data.cube);

513 strcpy(data.rotation ,rotation);

514 data.depth=depth;

515 return data;

516 }

517

518 #define BFS_TARGET_DEPTH 29

519 #define MAX_DATA 100000000

520 Cubedata *maindata=NULL;

521 #define HASH_TABLE_SIZE 225519191

522

523 // --- 1. ハッシュテーブルの構造定義とグローバル変数 ---

524

525 #include <stdlib.h> // malloc , のために追加free

526

527 // ハッシュテーブルの各エントリが持つノードの構造体
528 // このノードが連結リスト（チェイン）を形成する
529 typedef struct HashNode {

530 int maindata_idx; // 配列におけるノードのインデックスmaindata

531 struct HashNode* next; // 同じハッシュ値を持つ次のノードへのポインタ

21

532 } HashNode;

533

534 // ハッシュテーブル本体。各要素はチェインの先頭ノードへのポインタ
535 static HashNode ** hash_table = NULL;

536

537

538

539 // 以前の visited_states は不要になるので削除します
540 // static int visited_states[HASH_TABLE_SIZE] = {0}; // ← 削除
541

542 // メモリ解放用の関数（プログラム終了時に呼ぶ）
543 void free_hash_table () {

544 if (hash_table == NULL) return;

545 for (int i = 0; i < HASH_TABLE_SIZE; i++) {

546 HashNode* current = hash_table[i];

547 while (current != NULL) {

548 HashNode* temp = current;

549 current = current ->next;

550 free(temp);

551 }

552 hash_table[i] = NULL;

553 }

554 }

555

556 /**

557 * @brief キューブの状態からハッシュ値を計算する (Polynomial rolling hash)

558 * @param cube 計算対象のキューブ状態
559 * @return unsigned int 計算されたハッシュ値
560 */

561 unsigned int calculate_hash(const char cube [6][9]) {

562 unsigned int hash = 0;

563 // は一般的に使われる素数31

564 const unsigned int prime = 31;

565

566 for (int i = 0; i < 6; i++) {

567 for (int j = 0; j < 9; j++) {

568 // (hash * prime + value) % size

569 // 言語のCは負の値を返すことがあるため、正の値になるように調整%

570 hash = (hash * prime + cube[i][j]);

571 }

572 }

573 return hash % HASH_TABLE_SIZE;

574 }

575 #define FNV_PRIME_32 16777619

576 #define FNV_OFFSET_BASIS_32 2166136261U

577

578 unsigned int calculate_hash_fnv1a(const char cube [6][9]) {

579 // FNV -1で推奨される初期値と素数a (32-版bit)

580 unsigned int hash = 0x811c9dc5;

581 const unsigned int FNV_PRIME = 0x01000193;

22

582

583 for (int i = 0; i < 6; i++) {

584 for (int j = 0; j < 9; j++) {

585 // (1) ハッシュ値と入力データをするXOR

586 hash ^= (unsigned char)cube[i][j];

587 // (2) 素数を掛ける
588 hash *= FNV_PRIME;

589 }

590 }

591

592 hash ^= (hash >> 16);

593 hash *= 0x85ebca6b;

594 hash ^= (hash >> 13);

595 hash *= 0xc2b2ae35;

596 hash ^= (hash >> 16);

597

598 return hash % HASH_TABLE_SIZE;

599 }

600

601

602 /**

603 * @brief 幅優先探索(BFS)を用いて、初期状態から指定された深さまでの全ての状態を生成する
604 *

605 * グローバル配列 ‘maindata ‘ をキューとして使用し、探索結果をその配列に直接格納します。
606 * この実装は、同じ面を連続して回転させるような無駄な手順を枝刈り（スキップ）することで、
607 * 探索の効率を向上させています。
608 *

609 * @return int 生成された総ノード数
610 */

611 // short edge_from_idx[MAX_DATA];

612 // short edge_to_idx[MAX_DATA];

613 int edgenum =0;

614

615 /**

616 * @brief 幅優先探索(BFS)を用いて、初期状態から指定された深さまでの全ての状態を生成する
617 *

618 * この関数は、探索結果として以下のつのグローバル変数を更新します。3

619 * 1. maindata []: 発見したユニークなノード状態()の情報を格納する配列
620 * 2. edge_from_idx [], edge_to_idx []: ノード間の接続情報エッジ()をインデックスで記録する

配列
621 * 3. edgenum: 発見したエッジの総数
622 *

623 * @return int 生成された総ノード数
624 */

625 /*

626 int bfs_searchall () {

627 int head = 0; // キューの先頭 読み込み位置()

628 int tail = 0; // キューの末尾 書き込み位置()

629

630 // グローバル変数を初期化

23

631 edgenum = 0;

632 memset(visited_states , 0, sizeof(visited_states));

633

634 // 1. 初期ノードの準備
635 char initial_cube [6][9];

636 resetcube(initial_cube);

637 Cubedata initial_node = cubedata_create(initial_cube , "", 0);

638

639 // 2. 初期ノードをキューと訪問済みリストに追加
640 unsigned int initial_hash = calculate_hash_fnv1a (initial_node.cube);

641

642 // visited_states には maindata のインデックスを格納+1 は未訪問を意味するため(0)

643 visited_states[initial_hash] = tail + 1;

644

645 cubedata_write(maindata , tail , initial_node);

646 tail ++;

647

648 // 3. 探索ループ キューが空になるまで()

649 while (head < tail) {

650 // ★ 変更点 1: 現在処理しているノードの「インデックス」を取得
651 // これがエッジの始点(from)になる。
652 int current_idx = head;

653 Cubedata current_node = maindata[current_idx];

654 head ++; // キューを進める
655

656 // 深さ制限に達したら、このノードからは探索しない
657 if (current_node.depth >= BFS_TARGET_DEPTH) {

658 continue;

659 }

660

661 short child_depth = current_node.depth + 1;

662

663 // 4. 通りの回転を試して子ノードを生成12

664 for (int i = 0; i < 12; i++) {

665 // 配列が満杯なら探索を中断
666 if (tail >= MAX_DATA || edgenum >= MAX_DATA) {

667 fprintf(stderr , 警告": または配列が満杯です。探索を中断します。
maindataedge\n");

668 return tail;

669 }

670

671 char current_move_char = rotationindex[i];

672

673 // 子ノードの状態を生成
674 char temp_child_cube [6][9];

675 copycube(current_node.cube , temp_child_cube);

676 rotate_char(temp_child_cube , ¤t_move_char , 1);

677

678 // 子ノードのハッシュを計算し、訪問済みかチェック
679 unsigned int child_hash = calculate_hash_fnv1a (temp_child_cube);

24

680 int existing_node_idx = visited_states[child_hash] - 1; // して
ベースのインデックスに戻す-10

681

682 // ★ 変更点 2: エッジの始点を「インデックス」で記録
683 edge_from_idx[edgenum] = current_idx;

684

685 if (existing_node_idx >= 0) {

686 // ケースA: 子ノードは既に訪問済みの場合
687

688 // ★ 変更点 3A: エッジの終点を「既存ノードのインデックス」で記録
689 edge_to_idx[edgenum] = existing_node_idx;

690 edgenum ++;

691

692 continue; // この子ノードはキューに追加せず、次の回転へ
693

694 } else {

695 // ケースB: 子ノードが未訪問の場合
696

697 // ★ 変更点 3B: エッジの終点を「これから追加する新しいノードのインデック
ス(tail)」で記録

698 edge_to_idx[edgenum] = tail;

699 edgenum ++;

700

701 // 新しいノードを訪問済みリストに登録
702 visited_states[child_hash] = tail + 1;

703

704 // に格納するために、回転履歴文字列を作成maindata

705 char child_rotation_history [30];

706 strcpy(child_rotation_history , current_node.rotation);

707 int current_len = strlen(child_rotation_history);

708 if (current_len < sizeof(child_rotation_history) - 1) {

709 child_rotation_history [current_len] = current_move_char;

710 child_rotation_history [current_len + 1] = ’\0’;

711 }

712

713 // 新しいノードをキューの末尾に追加
714 Cubedata child_node = cubedata_create(temp_child_cube ,

child_rotation_history , child_depth);

715 cubedata_write(maindata , tail , child_node);

716 tail ++; // キューの末尾を更新
717 }

718 }

719 }

720

721 return tail; // 生成された総ノード数を返す
722 }*/

723 /**

724 * @brief 幅優先探索(BFS)を用いて、初期状態から指定された深さまでの全ての状態を生成する
725 *

726 * ハッシュ衝突を正しく処理するチェイニング法（連鎖法）を用いたハッシュテーブルを使用します。
727 *

25

728 * @return int 生成された総ノード数
729 */

730 void check_hash_table_duplicates () {

731 printf("Checking for duplicates in the hash table chains ...\n");

732 for (int i = 0; i < HASH_TABLE_SIZE; i++) {

733 HashNode* p1 = hash_table[i];

734 if (p1 == NULL || p1->next == NULL) continue;

735

736 // チェイン内の各ノードを比較
737 while (p1 != NULL) {

738 HashNode* p2 = p1->next;

739 while (p2 != NULL) {

740 if (memcmp(maindata[p1->maindata_idx].cube , maindata[p2->

maindata_idx].cube , sizeof(maindata [0]. cube)) == 0) {

741 printf("DUPLICATE STATE FOUND IN HASH CHAIN! hash_key =%d

, idx1=%d, idx2=%d\n",

742 i, p1 ->maindata_idx , p2 ->maindata_idx);

743 }

744 p2 = p2->next;

745 }

746 p1 = p1->next;

747 }

748 }

749 printf("Hash table check finished .\n");

750 }

751 int bfs_searchall_with_collision_handling () {

752 int head = 0; // キューの先頭 読み込み位置()

753 int tail = 0; // キューの末尾 書き込み位置()

754

755 // グローバル変数を初期化
756 edgenum = 0;

757 free_hash_table (); // 以前の実行結果が残らないようにクリア
758

759 // 1. 初期ノードの準備
760 char initial_cube [6][9];

761 resetcube(initial_cube);

762 Cubedata initial_node = cubedata_create(initial_cube , "", 0);

763

764 // 2. 初期ノードをキューに追加し、ハッシュテーブルに登録
765 // に追加maindata

766 cubedata_write(maindata , tail , initial_node);

767

768 // ハッシュテーブルに登録
769 unsigned int initial_hash = calculate_hash_fnv1a(initial_node.cube);

770 HashNode* new_hash_node = (HashNode *) malloc(sizeof(HashNode));

771 if (new_hash_node == NULL) {

772 fprintf(stderr , "メモリ確保エラー\n");

773 return 0;

774 }

775 new_hash_node ->maindata_idx = tail; // 現在のインデックスは0

26

776 new_hash_node ->next = hash_table[initial_hash];

777 hash_table[initial_hash] = new_hash_node;

778

779 tail ++;

780

781 // 3. 探索ループ キューが空になるまで()

782 while (head < tail) {

783 int current_idx = head;

784 Cubedata current_node = maindata[current_idx]; // コピーが発生するが、ここ
では許容

785 head ++;

786

787 if (current_node.depth >= BFS_TARGET_DEPTH) {

788 continue;

789 }

790

791 short child_depth = current_node.depth + 1;

792

793 // 4. 通りの回転を試して子ノードを生成12

794 for (int i = 0; i < 12; i++) {

795 if (tail >= MAX_DATA || edgenum >= MAX_DATA) {

796 fprintf(stderr , "警告: または配列が満杯です。探索を中断します。
maindataedge\n");

797 return tail;

798 }

799

800 char current_move_char = rotationindex[i];

801

802 char temp_child_cube [6][9];

803 copycube(current_node.cube , temp_child_cube);

804 rotate_char(temp_child_cube , ¤t_move_char , 1);

805

806 // --- ここからが最重要部分 ---

807

808 // 4a. 子ノードのハッシュを計算し、訪問済みかチェック
809 unsigned int child_hash = calculate_hash_fnv1a(temp_child_cube);

810

811 // 4b. チェインをたどって、本当に同じ状態が存在するか確認
812 int existing_node_idx = -1;

813 HashNode* current_chain = hash_table[child_hash];

814 while (current_chain != NULL) {

815 // ハッシュ値が同じでも、実際のデータが同じかで比較memcmp

816 if (memcmp(maindata[current_chain ->maindata_idx].cube ,

temp_child_cube , sizeof(temp_child_cube)) == 0) {

817 existing_node_idx = current_chain ->maindata_idx;

818 break;

819 }

820 current_chain = current_chain ->next;

821 }

822

823 // 4c. エッジを記録

27

824 // edge_from_idx[edgenum] = current_idx;

825

826 if (existing_node_idx >= 0) {

827 // ケースA: 子ノードは既に訪問済みの場合
828 // edge_to_idx[edgenum] = existing_node_idx;

829 edgenum ++;

830

831 } else {

832 // ケースB: 子ノードが未訪問の場合
833

834 // 新しいノードをに追加maindata

835 // 回転履歴はメモリを食うので、ここでは空にしておくことも可能
836 // 必要なら後で復元する
837

838 char child_rotation_history [30];

839 strcpy(child_rotation_history , current_node.rotation);

840 int current_len = strlen(child_rotation_history);

841 if (current_len < sizeof(child_rotation_history) - 1) {

842 child_rotation_history[current_len] = current_move_char;

843 child_rotation_history[current_len + 1] = ’\0’;

844 }

845

846 Cubedata child_node = cubedata_create(temp_child_cube ,

child_rotation_history , child_depth);

847 cubedata_write(maindata , tail , child_node);

848

849 // 新しいノードの情報をハッシュテーブルのチェインの先頭に追加
850 HashNode* new_node_for_hash = (HashNode *) malloc(sizeof(

HashNode));

851 if (new_node_for_hash == NULL) {

852 fprintf(stderr , "メモリ確保エラー\n");

853 return tail;

854 }

855 new_node_for_hash ->maindata_idx = tail;

856 new_node_for_hash ->next = hash_table[child_hash];

857 hash_table[child_hash] = new_node_for_hash;

858

859 // エッジの終点を記録
860 // edge_to_idx[edgenum] = tail;

861 edgenum ++;

862

863 // キューの末尾を更新
864 tail ++;

865 }

866 // --- ここまでが最重要部分 ---

867 }

868 }

869 check_hash_table_duplicates ();

870 return tail; // 生成された総ノード数を返す
871 }

28

872 // 配列をファイルに書き込む関数Cubedata

873 // data: 書き込む配列へのポインタCubedata

874 // num_elements: 配列内の要素数
875 // filename: 書き込むファイルの名前
876 // 戻り値: 成功した場合は、失敗した場合は0-1

877 int write_cubedata_to_file(const Cubedata data[], int num_elements , const

char *filename) {

878 FILE *outfile;

879

880 // ファイルをバイナリ書き込みモードで開く ("wb")

881 outfile = fopen(filename , "wb");

882 if (outfile == NULL) {

883 perror("Error opening file for writing");

884 return -1; // ファイルオープン失敗
885 }

886

887 // を使用して配列全体を一度に書き込むfwrite

888 // fwrite書き込むデータのポインタ(, 各要素のサイズ, 要素数, ファイルポインタ)

889 // 戻り値は実際に書き込まれた要素数
890 size_t items_written = fwrite(data , sizeof(Cubedata), num_elements ,

outfile);

891

892 if (items_written != num_elements) {

893 fprintf(stderr , "Error writing data to file. Wrote %zu of %d items .\

n", items_written , num_elements);

894 fclose(outfile);

895 return -1; // 書き込みエラー
896 }

897

898 // ファイルを閉じる
899 if (fclose(outfile) != 0) {

900 perror("Error closing file");

901 return -1; // ファイルクローズエラー データは書き込まれている可能性あり()

902 }

903

904 printf("Successfully wrote %d Cubedata elements to %s\n", num_elements ,

filename);

905 return 0; // 成功
906 }

907

908 // オプション() 配列をファイルから読み込む関数Cubedata テスト用()

909 int read_cubedata_from_file(Cubedata data[], int num_elements_to_read , const

char *filename) {

910 FILE *infile;

911

912 // ファイルをバイナリ読み込みモードで開く ("rb")

913 infile = fopen(filename , "rb");

914 if (infile == NULL) {

915 perror("Error opening file for reading");

916 return -1;

29

917 }

918

919 // を使用してファイルからデータを読み込むfread

920 size_t items_read = fread(data , sizeof(Cubedata), num_elements_to_read ,

infile);

921

922 if (items_read != num_elements_to_read) {

923 // ファイルの終端に達した場合やエラーの場合がある
924 if (feof(infile)) {

925 fprintf(stderr , "Error reading data: unexpected end of file.

Read %zu of %d items .\n", items_read , num_elements_to_read);

926 } else if (ferror(infile)) {

927 perror("Error reading data from file");

928 }

929 fclose(infile);

930 return -1;

931 }

932

933 // ファイルを閉じる
934 if (fclose(infile) != 0) {

935 perror("Error closing file after reading");

936 // データは読み込めている可能性があるので、ここではエラーを返さない選択肢もある
937 }

938

939 printf("Successfully read %zu Cubedata elements from %s\n", items_read ,

filename);

940 return 0; // 成功
941 }

942

943 /*

944 int dotter(Cubedata data[],int elements , const char *filename){

945

946 char nodename[elements][30];

947

948 // generate node

949 strcpy(nodename [0],"e");

950 for(int i=1;i<elements;i++){

951 strcpy(nodename[i],data[i]. rotation);

952 }

953

954 FILE *outfile;

955

956 // ファイルをバイナリ書き込みモードで開く ("wb")

957 outfile = fopen(filename , "w");

958 if (outfile == NULL) {

959 perror (" Error opening file for writing ");

960 return -1; // ファイルオープン失敗
961 }

962

963 fprintf(outfile , "digraph G {\n");

30

964 fprintf(outfile , " graph [overlap=scale];\n");

965 fprintf(outfile , " node [style=filled];\n");

966 for(int i=0; i<elements;i++){

967 if(strlen(nodename[i])==1) fprintf(outfile , " %s [fillcolor=red];\n

",nodename[i]);

968 if(strlen(nodename[i])==2) fprintf(outfile , " %s [fillcolor=blue];\n

",nodename[i]);

969 if(strlen(nodename[i])==3) fprintf(outfile , " %s [fillcolor=

lightblue];\n",nodename[i]);

970 if(strlen(nodename[i])==0) break;

971 }

972

973 for(int i=1; i<elements;i++){

974 fprintf(outfile , " %s -> %s;\n",edgefrom[i],edgeto[i]);

975 if(strlen(edgefrom[i]) ==0&& strlen(edgeto[i])==0) break;

976 }

977 fprintf(outfile , "}\n");

978 fclose(outfile);

979 printf (" Successfully wrote %d Cubedata elements to %s\n", elements ,

filename);

980 printf ("[DOTTER] Success .");

981 return 0;

982 }

983 */

984 /*

985 int dotter(Cubedata data[], int node_count , int edge_count , const char *

filename){

986 FILE *outfile;

987

988 outfile = fopen(filename , "w");

989 if (outfile == NULL) {

990 perror (" Error opening file for writing ");

991 return -1;

992 }

993

994 fprintf(outfile , "graph G {\n");

995 fprintf(outfile , " graph [overlap=scale , splines=true];\n");

996 fprintf(outfile , " node [style=filled , shape=circle , fixedsize=true ,

width =0.6];\n");

997

998 // --- ノード定義 ---

999 // 初期ノード "e" 空文字列の代わりに()

1000 fprintf(outfile , " e [label =\"\" , fillcolor=gold];\n");

1001

1002 // 深さごとのノード
1003 for(int i = 1; i < node_count; i++){

1004 const char* color;

1005 switch(data[i]. depth) {

1006 case 1: color = "lightcoral "; break;

1007 case 2: color = "lightblue "; break;

31

1008 case 3: color = "lightgreen "; break;

1009 default: color = "gray"; break;

1010 }

1011 // ノード名に回転履歴を、ラベルにも同じものを表示
1012 fprintf(outfile , " %s [label =\"%s\", fillcolor =%s];\n", data[i].

rotation , data[i].rotation , color);

1013 }

1014

1015 // --- エッジ定義 ---

1016 for(int i = 0; i < edge_count; i++){

1017 // ノード名が空文字列の場合は "e" として扱う
1018 const char* from_node = (strlen(edgefrom[i]) == 0) ? "e" : edgefrom[

i];

1019 const char* to_node = (strlen(edgeto[i]) == 0) ? "e" : edgeto[i];

1020 fprintf(outfile , " %s -- %s;\n", from_node , to_node);

1021 }

1022

1023 fprintf(outfile , "}\n");

1024 fclose(outfile);

1025 printf (" Successfully wrote %d nodes and %d edges to %s\n", node_count ,

edge_count , filename);

1026 printf ("[DOTTER] Success .\n");

1027 return 0;

1028 }

1029 */

1030 // 各ノードが持つ隣接ノードのリスト
1031 /*

1032 typedef struct AdjacencyList {

1033 int neighbors [12]; // 隣接ノードの配列におけるインデックスを格納maindata

1034 int neighbor_count;

1035 } AdjacencyList;

1036

1037 // 全ノード分の隣接リスト
1038 AdjacencyList adj[MAX_DATA];

1039

1040 void build_adjacency_list (int node_count , int edge_count) {

1041 // 初期化
1042 for (int i = 0; i < node_count; i++) {

1043 adj[i]. neighbor_count = 0;

1044 }

1045

1046 // エッジ情報インデックス()から直接リストを構築
1047 for (int i = 0; i < edge_count; i++) {

1048 int from_idx = edge_from_idx[i];

1049 int to_idx = edge_to_idx[i];

1050

1051 // from -> to を追加（重複チェック付き）
1052 char exists = 0;

1053 for (int k = 0; k < adj[from_idx]. neighbor_count; k++) {

1054 if (adj[from_idx]. neighbors[k] == to_idx) {

32

1055 exists = 1;

1056 break;

1057 }

1058 }

1059 if (! exists && adj[from_idx]. neighbor_count < 12) {

1060 adj[from_idx]. neighbors[adj[from_idx]. neighbor_count ++] = to_idx

;

1061 }

1062

1063 // to -> from を追加（重複チェック付き）
1064 exists = 0;

1065 for (int k = 0; k < adj[to_idx]. neighbor_count; k++) {

1066 if (adj[to_idx]. neighbors[k] == from_idx) {

1067 exists = 1;

1068 break;

1069 }

1070 }

1071 if (! exists && adj[to_idx]. neighbor_count < 12) {

1072 adj[to_idx]. neighbors[adj[to_idx]. neighbor_count ++] = from_idx;

1073 }

1074 }

1075 printf (" Adjacency list has been built successfully .\n");

1076 }

1077

1078 // とのにおけるインデックスを引数とするcube1cube2maindata

1079 int is_distance_at_least_3_improved (int idx1 , int idx2) {

1080

1081 // 距離 0 のチェック
1082 if (idx1 == idx2) return 0; // false

1083

1084 // 距離 1 のチェック
1085 // の隣接ノードにが含まれているか調べるidx1idx2

1086 for (int i = 0; i < adj[idx1]. neighbor_count; i++) {

1087 if (adj[idx1]. neighbors[i] == idx2) {

1088 return 0; // false , 距離1

1089 }

1090 }

1091

1092 // 距離 2 のチェック
1093 // の各隣接ノードidx1(neighbor1)について、その隣接ノード(neighbor2)にが含まれているか調

べるidx2
1094 for (int i = 0; i < adj[idx1]. neighbor_count; i++) {

1095 int neighbor1_idx = adj[idx1]. neighbors[i];

1096

1097 // の隣接ノードを調べるneighbor1

1098 for (int j = 0; j < adj[neighbor1_idx]. neighbor_count; j++) {

1099 int neighbor2_idx = adj[neighbor1_idx]. neighbors[j];

1100 if (neighbor2_idx == idx2) {

1101 return 0; // false , 距離2

1102 }

33

1103 }

1104 }

1105

1106 // 上記のいずれにも当てはまらなければ、距離は以上3

1107 return 1; // true

1108 }*/

1109

1110 // greedy () が生成するデータ
1111 int codeword_indices[MAX_DATA]; // 見つけた符号語のにおけるインデックスを格納maindata

1112 int codeword_count = 0; // 見つけた符号語の総数
1113

1114 int reverse_rotation(char in[]) {

1115

1116 // --- ^^e2 ^^91^^ a0 安全性のためのチェック ---

1117 if (in == NULL) {

1118 return -1;

1119 }

1120

1121 // --- ^^e2 ^^91^^ a1 文字列の反転処理（前回と同じ） ---

1122 int length = strlen(in);

1123 if (length == 0) {

1124 return 0; // 空文字列なら何もしない
1125 }

1126

1127 int start = 0;

1128 int end = length - 1;

1129 char temp;

1130

1131 while (start < end) {

1132 temp = in[start];

1133 in[start] = in[end];

1134 in[end] = temp;

1135

1136 start ++;

1137 end --;

1138 }

1139

1140 // --- ^^e2 ^^91^^ a2 大文字と小文字の入れ替え処理（ここからが追加部分） ---

1141 for (int i = 0; i < length; i++) {

1142 // 現在の文字を取得
1143 char c = in[i];

1144

1145 // もし大文字なら小文字に変換
1146 if (isupper(c)) {

1147 in[i] = tolower(c);

1148 }

1149 // もし小文字なら大文字に変換
1150 else if (islower(c)) {

1151 in[i] = toupper(c);

1152 }

34

1153 // アルファベット以外（数字、記号、スペースなど）は何もしない
1154 }

1155

1156 // --- ^^e2 ^^91^^ a3 成功を通知 ---

1157 return 0;

1158 }

1159

1160 int compare_cubedata(const void* a, const void* b) {

1161 Cubedata* cubeA = (Cubedata *)a;

1162 Cubedata* cubeB = (Cubedata *)b;

1163 return memcmp(cubeA ->cube , cubeB ->cube , sizeof(cubeA ->cube));

1164 }

1165 int bfs_uf () {

1166 int head = 0; // キューの先頭 読み込み位置()

1167 int tail = 0; // キューの末尾 書き込み位置()

1168

1169 // グローバル変数を初期化
1170 edgenum = 0;

1171 free_hash_table (); // 以前の実行結果が残らないようにクリア
1172

1173 // 1. 初期ノードの準備
1174 char initial_cube [6][9];

1175 resetcube(initial_cube);

1176 Cubedata initial_node = cubedata_create(initial_cube , "", 0);

1177

1178 // 2. 初期ノードをキューに追加し、ハッシュテーブルに登録
1179 // に追加maindata

1180 cubedata_write(maindata , tail , initial_node);

1181

1182 // ハッシュテーブルに登録
1183 unsigned int initial_hash = calculate_hash_fnv1a(initial_node.cube);

1184 HashNode* new_hash_node = (HashNode *) malloc(sizeof(HashNode));

1185 if (new_hash_node == NULL) {

1186 fprintf(stderr , "メモリ確保エラー\n");

1187 return 0;

1188 }

1189 new_hash_node ->maindata_idx = tail; // 現在のインデックスは0

1190 new_hash_node ->next = hash_table[initial_hash];

1191 hash_table[initial_hash] = new_hash_node;

1192

1193 tail ++;

1194

1195 // 3. 探索ループ キューが空になるまで()

1196 while (head < tail) {

1197 int current_idx = head;

1198 Cubedata current_node = maindata[current_idx]; // コピーが発生するが、ここ
では許容

1199 head ++;

1200

1201 if (current_node.depth >= BFS_TARGET_DEPTH) {

35

1202 continue;

1203 }

1204

1205 short child_depth = current_node.depth + 1;

1206

1207 // 4. 通りの回転を試して子ノードを生成12

1208 for (int i = 0; i < 2; i++) {

1209 if (tail >= MAX_DATA || edgenum >= MAX_DATA) {

1210 fprintf(stderr , "警告: または配列が満杯です。探索を中断します。
maindataedge\n");

1211 return tail;

1212 }

1213

1214 char current_move_char = rotationindex[i];

1215

1216 char temp_child_cube [6][9];

1217 copycube(current_node.cube , temp_child_cube);

1218 rotate_char(temp_child_cube , ¤t_move_char , 1);

1219

1220 // --- ここからが最重要部分 ---

1221

1222 // 4a. 子ノードのハッシュを計算し、訪問済みかチェック
1223 unsigned int child_hash = calculate_hash_fnv1a(temp_child_cube);

1224

1225 // 4b. チェインをたどって、本当に同じ状態が存在するか確認
1226 int existing_node_idx = -1;

1227 HashNode* current_chain = hash_table[child_hash];

1228 while (current_chain != NULL) {

1229 // ハッシュ値が同じでも、実際のデータが同じかで比較memcmp

1230 if (memcmp(maindata[current_chain ->maindata_idx].cube ,

temp_child_cube , sizeof(temp_child_cube)) == 0) {

1231 existing_node_idx = current_chain ->maindata_idx;

1232 break;

1233 }

1234 current_chain = current_chain ->next;

1235 }

1236

1237 // 4c. エッジを記録
1238

1239 if (existing_node_idx >= 0) {

1240 // ケースA: 子ノードは既に訪問済みの場合
1241 edgenum ++;

1242

1243 } else {

1244 // ケースB: 子ノードが未訪問の場合
1245

1246 // 新しいノードをに追加maindata

1247 // 回転履歴はメモリを食うので、ここでは空にしておくことも可能
1248 // 必要なら後で復元する
1249

36

1250 char child_rotation_history [40];

1251 strcpy(child_rotation_history , current_node.rotation);

1252 int current_len = strlen(child_rotation_history);

1253 if (current_len < sizeof(child_rotation_history) - 1) {

1254 child_rotation_history[current_len] = current_move_char;

1255 child_rotation_history[current_len + 1] = ’\0’;

1256 }

1257

1258 Cubedata child_node = cubedata_create(temp_child_cube ,

child_rotation_history , child_depth);

1259 cubedata_write(maindata , tail , child_node);

1260

1261 // 新しいノードの情報をハッシュテーブルのチェインの先頭に追加
1262 HashNode* new_node_for_hash = (HashNode *) malloc(sizeof(

HashNode));

1263 if (new_node_for_hash == NULL) {

1264 fprintf(stderr , "メモリ確保エラー\n");

1265 return tail;

1266 }

1267 // printf ("[BFS -UF]%s\n",child_rotation_history);

1268 new_node_for_hash ->maindata_idx = tail;

1269 new_node_for_hash ->next = hash_table[child_hash];

1270 hash_table[child_hash] = new_node_for_hash;

1271

1272 // エッジの終点を記録
1273 edgenum ++;

1274

1275 // キューの末尾を更新
1276 tail ++;

1277 }

1278 // --- ここまでが最重要部分 ---

1279 }

1280 }

1281 check_hash_table_duplicates ();

1282 return tail; // 生成された総ノード数を返す
1283 }

1284 int koukanshi(char cube [6][9] , char rotation1[],char rotation2 []){

1285 char temp_rotation [30];

1286 rotate_char(cube ,rotation1 ,strlen(rotation1));

1287 rotate_char(cube ,rotation2 ,strlen(rotation2));

1288

1289 strcpy(temp_rotation ,rotation1);

1290 reverse_rotation(temp_rotation);

1291 rotate_char(cube ,temp_rotation ,strlen(temp_rotation));

1292 strcpy(temp_rotation ,rotation2);

1293 reverse_rotation(temp_rotation);

1294 rotate_char(cube ,temp_rotation ,strlen(temp_rotation));

1295 return 0;

1296 }

1297 typedef struct {

37

1298 char cube_state [6][9]; // キーとなるキューブの状態
1299 UT_hash_handle hh; // に必須のメンバ。これがないと動かないuthash

1300 } forbidden_item;

1301

1302 #define KYOYAKU_DEPTH 1

1303 int kyoyaku_search(char kyoya []){

1304 clock_t start_time = clock ();

1305 int word_count =0;

1306 //1: とからのみ生成される状態をまで全て記録するrotation1rotation2DEPTH

1307 int node_count = bfs_uf ();

1308 // build_adjacency_list (node_count , edgenum);

1309 //2: で生成された状態を全て1で共役するkyoyaku

1310 char inverse_rotation [30];

1311 char temp_rotation [30];

1312 for(int j=1;j<node_count;j++){

1313 Cubedata tempcube=maindata [0];

1314 strcpy(inverse_rotation ,kyoya);

1315 reverse_rotation(inverse_rotation);

1316 snprintf(temp_rotation ,30,"%s%s%s",kyoya ,maindata[j].rotation ,

inverse_rotation);

1317 rotate_char(tempcube.cube ,temp_rotation ,strlen(temp_rotation));

1318 cubedata_write(maindata ,j,tempcube);

1319

1320 strcpy(maindata[j].rotation ,temp_rotation);

1321

1322 }

1323

1324 //3: で生成できた状態同士が距離にならないか調べる。ならなかったら符号語リストに追加23

1325 char tempcompare [150][6][9];

1326 char rotation [2];

1327 int count;

1328 short is_duplicate;

1329 for(int i=0;i<node_count;i++){

1330 count =1;

1331 //if(i%(node_count /20) ==0) printf ("[K-Search] %d/%d\n",i,node_count);

1332

1333 //ここから
1334

1335 for(int j=0;j<150;j++){

1336 copycube(maindata[i].cube ,tempcompare[j]);

1337 }

1338 for(int j=0;j<12;j++){

1339 rotate_char(tempcompare[count],& rotationindex[j],1);

1340 count ++;

1341 }

1342 for(int j=0;j<12;j++){

1343 for(int k=0;k<12;k++){

1344 if (j == k + 6 || k == j + 6) continue;

1345

1346 rotation [0]= rotationindex[j]; rotation [1]= rotationindex[k];

38

1347 rotate_char_lut(tempcompare[count],rotation);

1348 count ++;

1349 }

1350 }

1351 is_duplicate =0;

1352 //#pragma omp parallel for schedule(dynamic ,8)

1353 for(int j=0;j<codeword_count;j++){

1354 if(is_duplicate ==1) continue;

1355 if(maindata[i]. rotation [1]== maindata[codeword_indices[j]].

rotation [1]) continue;

1356

1357 // printf ("[K-Search] Compared %s & %s\n",maindata[i].rotation ,

maindata[j]. rotation);

1358 for(int k=0;k<count;k++){

1359 if(is_duplicate ==1) continue;

1360 if(memcmp(tempcompare[k], maindata[codeword_indices[j]].cube

, sizeof(tempcompare[k]))==0){

1361 //#pragma omp atomic write

1362 is_duplicate =1;

1363 break;

1364 }

1365

1366 }

1367

1368 }

1369 if(is_duplicate ==0){

1370 codeword_indices[codeword_count]=i;

1371 // printf ("[K-Search] Codeword append :%d",i);

1372 codeword_count ++;

1373 if (codeword_count % 1000 == 0) {

1374 double elapsed = (double)(clock() - start_time) /

CLOCKS_PER_SEC;

1375 printf("%d,%.3f\n", codeword_count , elapsed);

1376 }

1377 }

1378 }

1379 // 3.1: 生成された状態同士を全て検証する必要はない。とのように、先頭の文字が異なるもの同士の組み
合わせと、原点の組み合わせを調べれば良い。AAAABAAA

1380

1381 printf("[K-Search] %d/%d codewords found.",codeword_count ,node_count);

1382 return 0;

1383 }

1384 int kyoyaku_search_hash(char kyoya []){

1385 clock_t start_time = clock ();

1386 int word_count =0;

1387 //1: とからのみ生成される状態をまで全て記録するrotation1rotation2DEPTH

1388 int node_count = bfs_uf ();

1389 // build_adjacency_list (node_count , edgenum);

1390 //2: で生成された状態を全て1で共役するkyoyaku

1391 char inverse_rotation [40];

39

1392 char temp_rotation [40];

1393 for(int j=1;j<node_count;j++){

1394 Cubedata tempcube=maindata [0];

1395 strcpy(inverse_rotation ,kyoya);

1396 reverse_rotation(inverse_rotation);

1397 snprintf(temp_rotation ,40,"%s%s%s",kyoya ,maindata[j].rotation ,

inverse_rotation);

1398 rotate_char(tempcube.cube ,temp_rotation ,strlen(temp_rotation));

1399 cubedata_write(maindata ,j,tempcube);

1400 strcpy(maindata[j].rotation ,temp_rotation);

1401

1402 }

1403 //3: で生成できた状態同士が距離にならないか調べる。ならなかったら符号語リストに追加23

1404 // ハッシュテーブルの先頭を指すポインタ。最初はにしておく。NULL

1405 forbidden_item *forbidden_set = NULL;

1406

1407 // 最初の符号語として原点(maindata [0])を追加
1408 codeword_indices [0] = 0;

1409 codeword_count = 1;

1410

1411 // --- 原点の近傍（距離以内）を生成して、2に追加forbidden_set ---

1412 char tempcompare [150][6][9];

1413 char rotation [2];

1414 int count = 1;

1415

1416 // maindataの状態をコピー[0]

1417 copycube(maindata [0].cube , tempcompare [0]);

1418

1419 // 距離の状態を生成1

1420 for (int j = 0; j < 12; j++) {

1421 copycube(maindata [0].cube , tempcompare[count]);

1422 rotate_char(tempcompare[count], &rotationindex[j], 1);

1423 count ++;

1424 }

1425 // 距離の状態を生成2

1426 for (int j = 0; j < 12; j++) {

1427 for (int k = 0; k < 12; k++) {

1428 if (j == k + 6 || k == j + 6) continue;

1429 //参考:char rotationindex [12]=" UFRDBLufrdbl ";

1430 copycube(maindata [0].cube , tempcompare[count]);

1431 rotation [0] = rotationindex[j]; rotation [1] = rotationindex[k];

1432 rotate_char_lut(tempcompare[count], rotation);

1433 count ++;

1434 }

1435 }

1436

1437 // 生成した距離0, 1, の全ての状態をハッシュテーブル（禁止リスト）に追加2

1438 for (int k = 0; k < count; k++) {

1439 forbidden_item *item = malloc(sizeof(forbidden_item));

1440 memcpy(item ->cube_state , tempcompare[k], sizeof(item ->cube_state));

40

1441 HASH_ADD(hh, forbidden_set , cube_state , sizeof(item ->cube_state),

item);

1442 }

1443

1444

1445 // --- メインの探索ループ (O(N^2)からO(N)へ) ---

1446 for (int i = 1; i < node_count; i++) {

1447 if (i % (node_count / 20) == 0) printf("[K-Search] %d/%d\n", i,

node_count);

1448

1449 forbidden_item *found_item = NULL;

1450 // 候補が禁止リストi(forbidden_set)に入っているか高速に検索
1451 HASH_FIND(hh, forbidden_set , maindata[i].cube , sizeof(maindata[i].

cube), found_item);

1452

1453 if (found_item == NULL) {

1454

1455 // 見つからなかった場合 => 新しい符号語として採用！
1456 codeword_indices[codeword_count] = i;

1457 codeword_count ++;

1458 if (codeword_count % 10000 == 0) {

1459 double elapsed = (double)(clock() - start_time) /

CLOCKS_PER_SEC;

1460 printf("%d,%.3f\n", codeword_count , elapsed);

1461 }

1462 // この新しい符号語の近傍（距離以内）を計算して、禁止リストに追加する2

1463 // 上の原点の近傍を計算したコードとほぼ同じ()

1464 count = 1;

1465 copycube(maindata[i].cube , tempcompare [0]);

1466 // 距離1

1467 for (int j = 0; j < 12; j++) {

1468 copycube(maindata[i].cube , tempcompare[count]);

1469 rotate_char(tempcompare[count], &rotationindex[j], 1);

1470 count ++;

1471 }

1472 // 距離2

1473 for (int j = 0; j < 12; j++) {

1474 for (int k = 0; k < 12; k++) {

1475 if (j == k + 6 || k == j + 6) continue;

1476

1477 copycube(maindata[i].cube , tempcompare[count]);

1478 rotation [0] = rotationindex[j]; rotation [1] =

rotationindex[k];

1479 rotate_char_lut(tempcompare[count], rotation);

1480 count ++;

1481 }

1482 }

1483

1484 // 新しい禁止状態をハッシュテーブルに追加
1485 for (int k = 0; k < count; k++) {

41

1486 // 念のため、追加する前にもう一度チェック（必須ではないが安全）
1487 HASH_FIND(hh, forbidden_set , tempcompare[k], sizeof(

tempcompare[k]), found_item);

1488 if (found_item == NULL) {

1489 forbidden_item *item = malloc(sizeof(forbidden_item));

1490 memcpy(item ->cube_state , tempcompare[k], sizeof(item ->

cube_state));

1491 HASH_ADD(hh, forbidden_set , cube_state , sizeof(item ->

cube_state), item);

1492 }

1493 }

1494 }

1495 }

1496 printf("[K-Search] %d/%d codewords found.", codeword_count , node_count);

1497 // --- 最後に、ハッシュテーブルで確保したメモリを全て解放 ---

1498 forbidden_item *current_item , *tmp;

1499 HASH_ITER(hh, forbidden_set , current_item , tmp) {

1500 HASH_DEL(forbidden_set , current_item); // テーブルからエントリを削除
1501 free(current_item); // メモリを解放
1502 }

1503

1504

1505 return 0;

1506 }

1507 int main(){

1508

1509 if (hash_table == NULL) {

1510 hash_table = calloc(HASH_TABLE_SIZE , sizeof(HashNode *));

1511 if (hash_table == NULL) {

1512 fprintf(stderr , "Failed to allocate hash_table\n");

1513 return 1;

1514 }

1515 }

1516 maindata = malloc(sizeof(Cubedata) * MAX_DATA);

1517 kyoyaku_search_hash("R");

1518 return 0;

1519 }

1520 /*

1521 int main(){

1522 printf (" Starting BFS search for depth %d...\n", BFS_TARGET_DEPTH);

1523

1524 // 1. でノードとエッジをインデックスで生成BFS

1525 int node_count = bfs_uf ();

1526

1527 printf ("BFS finished. Found %d nodes and %d edges .\n", node_count ,

edgenum);

1528

1529 printf (" Checking for duplicates ...\n");

1530 // isuucheckall(node_count);

1531 placeholder(node_count);

42

1532 // をソートmaindata

1533 // qsort(maindata , node_count , sizeof(Cubedata), compare_cubedata);

1534

1535 int duplicate_count = 0;

1536

1537 for (int i = 0; i < node_count - 1; i++) {

1538 if (memcmp(maindata[i].cube , maindata[i+1].cube , sizeof(maindata[i].

cube)) == 0) {

1539 printf (" Duplicate found at index %d and %d after sorting .\n", i,

i+1);

1540 // どんな状態が重複しているか表示してみる
1541 // printcube(maindata[i].cube);

1542 duplicate_count ++;

1543 }

1544 }

1545 // printf (" Total duplicates found: %d\n", duplicate_count);

1546 // 2. エッジ情報から隣接リストを構築
1547 // printf (" Building adjacency list ...\n");

1548 // build_adjacency_list (node_count , edgenum);

1549

1550 // オプション() グラフ描画
1551 // dotter(maindata , node_count , edgenum , "dot/graph.dot");

1552

1553 // 3. アルゴリズムを実行Greedy

1554 // greedy(node_count);

1555 return 0;

1556 }

1557

1558 */

Listing 1 ルービックキューブ探索プログラム

43

