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1 はじめに
競馬とは騎手が乗った馬の着順を予想するギャンブルであり，スポーツとしても世界中で親
しまれている．このギャンブルの最適な投資戦略は数学的な最適化問題として捉えることがで
きる．繰り返し行われる賭けにおいて，資金の成長率はどれだけ真の確率に近い予測ができる
かという情報量的な尺度として定式化できる．したがって，賭け師が立てた戦略が実際のレー
ス結果の確率分布にどれだけ近いかが重要となる．そこで，本研究ではこの戦略と結果のズレ
を測るための尺度として２つの確率分布の間の距離を表すダイバージェンスというものを用い
る．
　文献 [1]ではこの問題を考察する上で，ダイバージェンスが有用であることが示されている．
しかし，文献 [1]で示されたダイバージェンス表現は賭け師が資金のすべてを賭けに投資する
ことを前提としている．そこで本研究ではまずこの前提を拡張し，手元資金を考慮した場合の
倍増レートを新たにダイバージェンスを用いて表現することを主たる目的とする．これによ
り，従来の結果を包含する一般式を導出し，あらゆるオッズ環境下において現金の保持が資金
の成長にどのような影響を与えるか，また，オッズが不利な状況でどのように資金を成長させ
ているのかを統一的に明らかにすることを目指す．
　さらに，現実の競馬ではオッズや過去の戦績だけでなく，天候や馬のコンディションなどの
レース結果の予測精度を向上させ、資金の増加速度を高める要因となる補助情報が存在する．
このような補助情報が存在する場合の倍増レートについても手元資金を考慮した形での定式化
を行い，補助情報を得たことによる倍増レートの向上分をダイバージェンスを用いて整理する
ことで，情報が持つ金銭的な価値を明らかにすることを目指す．

2 競馬の定式化と最適戦略
2.1 競馬の定式化
本章では文献 [1] に従って競馬を最適化問題として定式化する．本研究では m 頭が出走す
る競馬のレースで 1着になる馬を賭け師が予想する状況を想定する．胴元が設定したオッズと
各馬の勝利確率を参考にし，賭け師は自身の資金を出走する各馬への賭け金と手元に残す現金
に分配する．手元に現金として保持する資金の割合を b0，馬 i(i = 1, 2, · · · ,m)に賭ける資金
の割合を bi とする．この戦略 b = (b0, b1, · · · , bm)は

bi ≥ 0 (i = 0, 1, · · · ,m) (1)
m∑
i=0

bi = 1 (2)
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の制約条件を満たすものとする．
　レースにおいて馬 iが勝った場合，その馬への賭け金は oi 倍の配当となって払い戻され，他
の馬に賭けた資金はすべて没収される．この oi をオッズといい，oi > 0であるとする．した
がって，馬 iが勝った場合のレース後の資金はレース前の資金に対して (b0 + bioi)倍となる．

定義 1. 戦略 b を固定した下で，相対的資金 S(i) を

S(i) ≜ b0 + bioi (3)

と定義する．これはレース後の資金とレース前の資金の比を表す．

オッズは各馬のオッズの逆数の総和∑m
i=1

1
oi
の値に基づき次のように分類される．



公平なオッズ
m∑
i=1

1

oi
= 1 : 賭け師と胴元の間で資金のやり取りが公平に行われる状況．

優公平なオッズ
m∑
i=1

1

oi
< 1 : オッズが甘く設定されており，賭け師にとって有利な状況．

劣公平なオッズ
m∑
i=1

1

oi
> 1 : 賭け師にとって不利な状況．現実の競馬のオッズは劣公平．

　レースは繰り返し行われ，各レースの結果 X1, X2, · · · は独立に同一の確率分布 p =

(p1, · · · , pm) に従うものとする．賭け師は得られた資金を次のレースに再投資することがで
きるため，長期的に見ると資金は各レースの相対的資金の積で増減していく．したがって，n

回のレースが終了した後の賭け師の総資金 Sn は第 k 回のレースで勝利した馬を Xk とすると

Sn =

n∏
k=1

S(Xk) (4)

となる．

定義 2. 資金の指数関数的な成長率である倍増レート W (b,p) を

W (b,p) ≜ E[logS(X)] (5)

=

m∑
i=1

pi log(b0 + bioi) (6)

と定義する．ここで，X は各レースの結果 X1, X2, · · · が従う確率分布と同一の分布に従う確
率変数であり，任意のレースにおける勝ち馬を表している．
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レースの結果 X1, X2, · · · が独立同一分布に従うため，logS(X1), logS(X2), · · · も独立同
一分布に従う．したがって，大数の弱法則より，レース回数 n が十分に大きい場合，

1

n
logSn =

1

n

n∑
k=1

logS(Xk)

→ E[logS(X)] = W (b,p) (7)

の確率収束が成り立つ．この結果は長期的には資金の対数成長率が倍増レート W (b,p) に収
束することを意味しているため，資金 Sn は

Sn ≈ 2nW (b,p) (8)

と近似され，倍増レートで指数関数的に増大する．本研究ではこの倍増レート W (b,p) を最
大化する戦略 b を最適な戦略 b∗ と定義する．したがって，b∗ は式 (1)と式 (2)の制約のもと
で倍増レート W (b,p) を最大化する戦略である．

2.2 最適戦略
本節では 2.1 節で定義した倍増レートを最大化する最適な戦略について導出された結果を
オッズの条件ごとに以下に示す．

公平，優公平なオッズ
オッズが公平または優公平な場合の最適な戦略は文献 [2]においてラグランジュの未定乗数
法を用いて導出されたものである．F ≜ 1−

∑m
i=1

1
oi
と定義すると戦略 b∗ と最適な倍増レー

トW ∗ は

bi = pi(1− b0F )− b0
oi

(9)

= pi − b0(piF +
1

oi
) (10)

W ∗ =

m∑
i=1

pi log oi −H(p) + log(1− b0F ) (11)

で与えられる [2]．ただし，この式 (9)は右辺に手元資金の割合 b0 を含んでいるため，b0 の値
を決めなければ，戦略 b∗ の具体的な数値を求めることはできない．H(p) はエントロピーを
表し，

H(p) ≜ −
m∑
i=1

pi log pi (12)
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と定義される．
　式 (9)のままでは手元資金 b0 が未定であるため，オッズの分類ごとにこの式を適用し，具
体的な最適戦略を確定させていく．
　公平なオッズの場合（F = 0），最適な戦略を表す式は

bi = pi −
b0
oi

(13)

のように簡略化される．式 (13) で与えられる戦略 b∗ が最適化問題の実行可能解となるため
にはすべての i において bi ≥ 0 の制約が成立しなければならない．この条件より，手元資金
b0 の範囲は

b0 ≤ min
i

pioi (14)

に制限される．公平なオッズでは F = 0 であるため，手元資金 b0 の値にかかわらず式 (11)

の右辺第 3項は log(1− 0) = 0 となる．したがって，b0 が式 (14)の範囲内にある限り，最適
な倍増レート W ∗ は手元資金の割合に依存せず

W ∗ =

m∑
i=1

pi log oi −H(p) (15)

をとる．したがって，この範囲内であれば資金の一部を手元に保持しても最大の倍増レートは
変わらない．特に，b0 = 0 のときの最適な戦略 b∗ は bi = pi となり，これは比例賭けと呼ば
れる．
　優公平なオッズ (F > 0)ではW ∗ の第 3項は b0 > 0のときに負の値となるため，可能な限
り小さくする必要がある．制約条件 b0 ≥ 0 より b0 の最小値は 0 であるため，賭け師の資金
を全額賭けに用いる戦略 (b0 = 0)が最適である．したがって，最適な戦略 b∗ は bi = pi の比
例賭けとなる．

劣公平なオッズ
劣公平なオッズの場合，比例賭けは最適ではなく，資金の一部を現金として手元に取ってお
く戦略が最適となる．この場合の最適解は閉じた式で表せないが，文献 [3]で示されるアルゴ
リズムにより導出可能である．このアルゴリズムでは，まず全ての馬 i = 1, 2, · · · ,m を pioi

が大きい順 (p1o1 ≥ p2o2 ≥ · · · ≥ pmom) となるように並べ替え，Ck を

Ck ≜ 1−
∑k

i=1 pi

1−
∑k

i=1
1
oi

(16)

と定義する．次に，t を

0 < Ck < pk+1ok+1 (17)
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の不等式条件が成立しなくなる最小の非負の整数 k の値とする．このアルゴリズムによっ
て与えられる最適な戦略は決定された t 頭の馬に対してのみ賭けるというもので，賭ける馬
(i = 1, 2, · · · , t)への資金配分は

bi = pi −
Ct

oi
(18)

となり，賭けない馬 (i = t+ 1, t+ 2, · · · ,m)への資金配分は

bi = 0 (19)

となり，手元資金の割合は

b0 = Ct (20)

となる．この解が最適であることは文献 [3]で KT条件を満たすことによって数学的に証明さ
れている．

3 ダイバージェンスを用いた表現
第 2章ではラグランジュの未定乗数法やアルゴリズムを用いた各オッズ条件下での最適な戦
略と倍増レートを確認した．本章では倍増レートをダイバージェンスという情報量的な尺度を
用いて表現し，競馬の利益を改めて解釈する．

定義 3. 2つの確率分布 p = (p1, p2, · · · , pm) と b = (b1, b2, · · · , bm) が与えられたとき， p

から見た b のダイバージェンス D(p||b) を

D(p||b) ≜
m∑
i=1

pi log
pi
bi

(21)

と定義する．ここで常に D(p||b) ≥ 0 であり，p = b のとき D(p||b) = 0 となる．ダイバー
ジェンスは 2つの確率分布間の距離のような尺度として解釈でき，基準となる確率分布 p に
対して，比較対象の分布 b がどれだけ離れているかを表す非負の量である．

まず，公平なオッズにおいて前章までの一般的な設定とは異なる手元資金を持たない
（b0 = 0）場合の倍増レートを導出する．オッズの逆数を ri =

1
oi
とすると，公平なオッズで

は ∑m
i=1 ri = 1 となるため，r = (r1, · · · , rm) は確率分布とみなすことができる．これは胴

5



元が予測する勝ち馬の確率分布と解釈できる．このとき，倍増レート W (b,p) は

W (b,p) =

m∑
i=1

pi log(bioi) (22)

=

m∑
i=1

pi log

(
bi
ri

)
(23)

=

m∑
i=1

pi log

(
pi
ri

· bi
pi

)
(24)

=

m∑
i=1

pi

(
log

pi
ri

+ log
bi
pi

)
(25)

=

m∑
i=1

pi log
pi
ri

−
m∑
i=1

pi log
pi
bi

(26)

= D(p||r)−D(p||b) (27)

と導出される．ここで右辺第 1項の D(p||r)は真の確率分布 p と胴元の予想確率分布 r の距
離を表し，第 2項のD(p||b)は真の確率分布 p と賭け師の戦略 b の距離を表す．したがって，
b のほうが r よりも p の確率分布に近い場合，倍増レートは正となり，p = b のとき最大値
をとる．
　手元資金も考慮した場合の倍増レートをダイバージェンスを用いて表現すると

k ≜
m∑
i=1

1

oi
(28)

α ≜ b0(k − 1) + 1 (29)

W (b,p) =

m∑
i=1

pi log(b0 + bioi) (30)

=

m∑
i=1

pi log

(
b0ri + bi

piri
pi

)
(31)

=

m∑
i=1

pi log

(
(b0ri + bi)

1
α

pi
α

pi

ri
1
k

1

k

)
(32)

=

m∑
i=1

pi log

(
pi

ri
1
k

)
+

m∑
i=1

pi log

(
(b0ri + bi)

1
α

pi

)
+ log

α

k
(33)

= D
(
p
∥∥∥r
k

)
−D

(
p

∥∥∥∥b0r + b

α

)
+ log

α

k
(34)

という式が導出される．ここで b0r+b
α と r

k がそれぞれ確率分布であることを示す．
　まず， b0r+b

α の分子の各要素 b0ri + bi は制約条件 bi ≥ 0 (i = 0, 1, · · · ,m)と oi > 0より
常に 0以上となる．分母の α = b0(k − 1) + 1は k ≥ 1(公平・劣公平)の場合，k − 1 ≥ 0と
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b0 ≥ 0より正となる．一方，k < 1(優公平)の場合，0 < k < 1と b0 ≤ 1より −1 < b0(k− 1)

なので，α > 0で正となる．続いて，総和は
m∑
i=1

b0ri + bi
α

=
1

α

(
b0

m∑
i=1

ri +

m∑
i=1

bi

)
(35)

=
1

α
(b0k + (1− b0)) (36)

=
b0(k − 1) + 1

α
(37)

= 1 (38)

となる．したがって， b0r+b
α は確率分布である．

　次に， r
k の各要素 ri

k は ri > 0，k > 0であるため常に正となる．総和は
m∑
i=1

ri
k

=
1

k

m∑
i=1

1

oi
(39)

=
k

k
(40)

= 1 (41)

となる．以上より b0r+b
α と r

k は共に確率分布なので，D(p|| b0r+b
α ) ≥ 0，D(p|| rk ) ≥ 0 であ

る．したがって，式 (34)は以下の 3つの要素の和として解釈できる．

• 第 1項（オッズとの距離）: 真の確率分布と胴元の予想（オッズ）との距離を表す．胴
元の設定したオッズが真の確率から外れているほど，賭け師にとって儲けるチャンスが
大きくなる．

• 第 2項（自分の戦略との距離）: 真の確率分布と賭け師の戦略との距離を表す．マイナ
スがついているため，自分の予想が真の確率に近づくほど，利益は大きくなる．

• 第 3項（オッズ設定と資金のバランス）: オッズ設定の有利・不利と手元に残す資金の
バランスを表す．オッズが有利なときは利益を伸ばし，逆にオッズが不利なときは損失
を抑えるよう，手元資金 b0 を調整することでこの項の値を操作できる．

式 (34)は任意のオッズ設定に対して成立する一般的なダイバージェンスを用いた表現である．
この式を公平，優公平，劣公平の 3つのケースにそれぞれ適用し，ダイバージェンスによる表
現が第 2章で導出された最適戦略と整合することを確認する．

3.1 公平なオッズ
公平なオッズの場合は k = 1であり，この k の値を式 (34)に代入すると

W (b,p) = D(p||r)−D(p||b0r+b) (42)
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が導出される．賭け師が操作可能な変数は bのみであるため，倍増レートを最大化するには式
(42)の右辺第 2項のD(p||b0r + b)を最小化する必要があり，p = b0r + bのとき最小値 0を
とる．したがって，任意の i = 1, 2, · · · ,mにおいて

b0ri + bi = pi (43)

が成立しなければならない．bi ≥ 0なので

0 ≤ bi = pi − b0ri (44)

0 ≤ b0 ≤ pi
ri

= pioi (45)

となり，これが任意の iについて成立する必要があるため b0 がとり得る範囲は

0 ≤ b0 ≤ min
i

pioi (46)

のように制限される．式 (46)は式 (14)における倍増レート最大化のための b0 の範囲と一致
している．また，式 (44)は式 (9)で与えられた最適な戦略と一致している．したがって，公
平なオッズでは手元資金 b0 がこの範囲内にある限り，bi = pi − b0ri に従って bi を決定する
ことで常に最大の倍増レートを達成できる．

3.2 優公平なオッズ
優公平なオッズの場合，式 (34)の右辺第 3項の値の範囲は

0 ≤ log
α

k
≤ log

1

k
(47)

で b0 = 0のとき最大値の log 1
k となる．

　一方，式 (34)の右辺第 2項の D(p|| b0r+b
α )は常に 0以上であり，最小値 0をとる条件は

p =
b0r + b

α
(48)

である．ここで，第 3項を最大化する b0 = 0 という条件の下で，第 2項も同時に最小化でき
るかを確認する．式 (48)に b0 = 0 を代入すると

p = b (49)

となり，式 (1)，式 (2)の制約条件を満たしているため，この戦略は実行可能である．したがっ
て，第 2項が最小値をとり，第 3項が最大値をとるような倍増レートを最大化する最適な戦略
は比例賭け b = pである．これは式 (9)と一致する．

8



3.3 劣公平なオッズ
劣公平なオッズの場合，式 (34)の右辺第 3項の log α

k は常に負の値をとり，手元資金 b0 が
大きいほど大きな値をとる．この項単体で見れば，b0 = 1 のとき最大値 0 をとる．一方で，
式 (34) の右辺第 2 項の −D(p|| b0r+b

α ) を最大化するためには確率分布を一致させ，任意の
i = 1, 2, · · · ,mにおいて

bi = αpi − b0ri (50)

とする必要がある．しかし，劣公平な場合，第 3項を大きくするために b0 をある程度大きく
保つ必要があるが，オッズが低い馬に対して式 (50) を適用すると bi < 0 となり，制約条件
bi ≥ 0が満たされなくなる．したがって，すべての馬で式 (50)を満たすことは不可能であり，
一部の馬については bi = 0 とし，分布の一致による第 2項のダイバージェンスの最大化を諦
めなければならない．最適な倍増レートを得るためには bi > 0 とする馬と bi = 0 とする馬を
選別する必要がある．この賭ける馬の集合は手元資金 b0 と連動して決定されるため，単純な
数式変形のみで最適な戦略を求めることは困難である．そこで，条件を満たす集合を探索する
アルゴリズムが最適化問題を解く上で有効な手段となる．
　式 (34)にアルゴリズムで得られた最適な戦略である式 (18)，式 (19)，式 (20)を代入すると

W (b,p) = D
(
p
∥∥∥r
k

)
−D

(
p

∥∥∥∥b0r + b

α

)
+ log

α

k
(51)

= D
(
p
∥∥∥r
k

)
+

m∑
i=1

pi log

(
(b0ri + bi)

1
α

pi

)
+

m∑
i=1

pi logα+ log
1

k
(52)

= D
(
p
∥∥∥r
k

)
+

m∑
i=1

pi log

(
b0ri + bi

pi

)
+ log

1

k
(53)

= D
(
p
∥∥∥r
k

)
+

t∑
i=1

pi log

(
Ctri + pi − Ct

oi

pi

)
+

m∑
i=t+1

pi log

(
Ctri
pi

)
+ log

1

k
(54)

= D
(
p
∥∥∥r
k

)
+

m∑
i=t+1

pi log

(
Ct

pioi

)
+ log

1

k
(55)

となる．文献 [3] より賭けない馬（i = t + 1, . . . ,m）では Ct ≥ pioi が成立する．したがっ
て，式 (55) の右辺第 2 項の対数の真数は 1 以上となり，∑m

i=t+1 pi log
(

Ct

pioi

)
≥ 0 となる．

一方，賭ける馬（i = 1, · · · , t）ではアルゴリズムより b0ri + bi = pi が成立するため，対数
項は 0 となる．この結果からアルゴリズムによって導出された戦略は賭ける馬に対しては対
数項を消失させ，賭けない馬に対しては閾値 Ct と期待配当 pioi の大小関係により対数項を 0

以上に保つことで，倍増レート W (b,p) を最大化していると解釈できる．
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4 補助情報とダイバージェンス
ここまでの章では賭け師は各馬の勝利確率分布と胴元の設定したオッズのみを知っていると
いう前提のもとで最適な戦略を考察してきた．しかし，現実の競馬においては天候，馬のコン
ディションなどのレース結果を予測する上で役立つ情報が存在する．本章ではこのような補助
情報が与えられた場合の倍増レートについてダイバージェンスを用いて定式化する．レース結
果を表す確率変数を X，補助情報を表す確率変数を Y とし，その同時確率分布を PXY (x, y)

とする．胴元が設定するオッズは y に依存して変化するものとし，これを o(x|y)と表す．賭
け師の戦略も y に応じて変化し，手元資金の割合を b(0|y)，各馬 x へ賭ける資金の割合を
b(x|y)とする．

定義 4. 補助情報が存在する場合の倍増レート W (b,o, PXY ) を

W (b,o, PXY ) ≜
∑
x,y

PXY (x, y) log(b(0|y) + b(x|y)o(x|y)) (56)

と定義する．

賭けの回数が十分に大きいとき，資金は倍増レートの値に従って指数関数的に増大するた
め，式 (8)で議論した補助情報がない場合と同様に，この倍増レート W (b,o, PXY ) を最大化
することで資金の増大を最大化できる．
　情報の保有状況を 3つのパターンに分類し，それぞれの場合における倍増レートをダイバー
ジェンスを用いて表現する．

4.1 賭け師と胴元の両方が補助情報を知っている場合
賭け師と胴元の双方が補助情報 Y を知っている場合，胴元は Y = y に応じたオッズ o(x|y)
を設定し，賭け師も y に応じた戦略 b(0|y), b(x|y) をとることができる．ここで

k(y) ≜
∑
x

1

o(x|y)
(57)

α(y) ≜ b(0|y)(k(y)− 1) + 1 (58)

qX|Y (x|y) ≜
b(0|y)r(x|y) + b(x|y)

α(y)
(59)

sX|Y (x|y) ≜
r(x|y)
k(y)

(60)
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と定義する．これらを用いると倍増レートは

W (b,o, PXY )

=
∑
x,y

PXY (x, y) log(b(0|y) + b(x|y)o(x|y)) (61)

=
∑
x,y

PXY (x, y) log

(
b(0|y)r(x|y) + b(x|y)
PX|Y (x|y)r(x|y)

PX|Y (x|y)
)

(62)

=
∑
x,y

PXY (x, y) log

(
qX|Y (x|y)
PX|Y (x|y)

α(y)
PX|Y (x|y)
sX|Y (x|y)

1

k(y)

)
(63)

=
∑
x,y

PXY (x, y)

(
log

PY (y)PX|Y (x|y)
PY (y)sX|Y (x|y)

+ log
PY (y)qX|Y (x|y)
PY (y)PX|Y (x|y)

+ log
α(y)

k(y)

)
(64)

= D(PY PX|Y ||PY sX|Y )−D(PY PX|Y ||PY qX|Y ) +
∑
y

PY (y) log
α(y)

k(y)
(65)

のように変形できる．式 (65)は補助情報がない場合の式 (34)を条件付き確率分布へと拡張し
たものである．賭け師は戦略によって式 (65)の右辺第 2項の −D(PY PX|Y ||PY qX|Y )を最大
値 0にすることが可能である．

4.2 賭け師のみが補助情報を知っている場合
賭け師だけが補助情報 Y を知り，胴元は Y を知らない場合，胴元はオッズ y に依存しな
い o(x) を設定し，賭け師のみが y に応じた戦略 b(0|y), b(x|y) をとることができる．ここで

k ≜
∑
x

1

o(x)
(66)

sX(x) ≜ r(x)

k
(67)

と定義する．α(y) や qX|Y (x|y) は賭け師と胴元の両方が補助情報を知っている場合と同様に
定義される．これらを用いると倍増レートは

W (b,o, PXY )

=
∑
x,y

PXY (x, y) log(b(0|y) + b(x|y)o(x)) (68)

=
∑
x,y

PXY (x, y) log

(
qX|Y (x|y)
PX|Y (x|y)

α(y)
PX|Y (x|y)
sX(x)

1

k

)
(69)

=
∑
x,y

PXY (x, y)

(
log

qX|Y (x|y)
PX|Y (x|y)

+ log
PX|Y (x|y)
PX(x)

+ log
PX(x)

sX(x)
+ log

α(y)

k

)
(70)
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となる．式 (70)の第 2項は ∑
x,y PXY (x, y) log

PX|Y (x|y)
PX(x) = I(X;Y ) であるため，

W (b, o, PXY )

= D(PX ||sX)−D(PY PX|Y ||PY qX|Y ) + I(X;Y ) +
∑
y

PY (y) log
α(y)

k
(71)

のように変形できる．相互情報量は I(X;Y ) ≥ 0 であり，補助情報 Y とレース結果 X の関
連性が強く，予測に有用であるほど大きな値をとる．したがって，賭け師のみが補助情報を
知っている場合，その情報の価値（相互情報量）の分だけ倍増レートを増大させることが可能
である．

4.3 胴元のみが補助情報を知っている場合
胴元が補助情報 Y に基づいてオッズ o(x|y) を設定し，賭け師は Y を直接観測できない場
合を想定する．一見すると賭け師は不利な状況にあるように思われるが，賭け師は提示された
オッズ o(x|y) を観測することができる．オッズの設定が y に依存して変化するため，オッズ
のパターン自体が y に関する情報を含んでいることになる．したがって，賭け師はオッズを
通じて Y についての確率分布や同時確率分布，yそのものを推測し，その推測に基づいて戦略
を立てることが可能であるため，オッズが y の良い推定量となり，賭け師も実質的に多くの情
報を得られることがある．オッズ設定が y に対して単射である場合，賭け師は完全に補助情報
などを復元でき，倍増レートは式 (65)と同様になると考えられる．

5 まとめ
本研究ではm 頭が出走する競馬のレースで 1着になる馬を賭け師が予想する状況において，
手元資金 b0 を考慮した一般的な倍増レートの式をダイバージェンスを用いて表現した．これ
により，公平，優公平，劣公平という異なるオッズでの最適戦略をダイバージェンスの枠組み
で一つの式から統一的に理解できることを示した．特に，劣公平な場合に必要となる賭ける馬
を選定するアルゴリズムに対して，情報量的な観点からの解釈を与えた．また，補助情報があ
る場合の倍増レートを整理し，その中に相互情報量が自然な形で現れることを明らかにした．
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