線形代数2 例題・演習問題集 その1

- 1. \mathbb{R}^2 が線形空間であることを示せ.
- 2. $M(m,n;\mathbb{R})$ が線形空間であることを示せ.
- 3. $\mathbb{R}[x]$ の零ベクトルと、 $p(x) = a_0 + a_1x + \cdots + a_nx^n$ の逆元がなにか答えよ.
- 4. 線形空間の零ベクトルがただ一つであることを示せ.
- 5. $x \in V$ (V は線形空間) に対する逆ベクトルがただ一つであることを示せ.
- 6. 任意 $0x \in V$ に対して、 $0 \cdot x$ が零ベクトルであることを示せ.
- 7. 任意の $x \in V$ に対して, $(-1) \cdot x$ がx の逆ベクトルであることを示せ.
- 8. 講義中に説明した同一視のもとで、 \mathbb{R}^2 が \mathbb{R}^3 の部分空間になることを示せ.
- 9. \mathbb{R}^3 において、ベクトルv = (2,3,1) が u = (1,1,2) と w = (1,0,5) によって生成される部分空間に入っているか調べよ。また、入っている場合はv を u と w の一次結合で表せ。
- 10. \mathbb{R}^2 において、ベクトルv=(1,4) が u=(2,3) と w=(3,1) によって生成される部分空間 に入っているか調べよ。また、入っている場合は v を u と w の一次結合で表せ。
- 11. \mathbb{R}^3 において、ベクトル v=(1,4,-3) が u=(2,3,2) と w=(-1,0,2) によって生成される部分空間に入っているか調べよ。また、入っている場合は v を u と w の一次結合で表せ。
- 12. \mathbb{R}^3 において、ベクトルv=(1,2,3) が u=(2,1,5) と w=(1,0,a) によって生成される部分空間に入るためのaの条件を求めよ.
- 13. \mathbb{R}^3 において、 $W = \{(x, y, z) \in \mathbb{R}^3 \mid 2x y + 3z = 0\}$ を $\langle v, w \rangle$ の形で表せ.
- 14. \mathbb{R}^3 において、 $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ を $\langle v, w \rangle$ の形で表せ.
- 15. \mathbb{R}^3 において、 $W = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$ を $\langle v, w \rangle$ の形で表せ.
- 16. \mathbb{R}^4 において, $W = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z + w = 0, x + 2y + z + 2w = 0\}$ を $\langle v, w \rangle$ の形で表せ.
- 17. \mathbb{R}^3 において、 $W = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=1\}$ が部分空間にならないことを示せ.
- 18. \mathbb{R}^3 において, $W_1 = \{(x,y,z) \in \mathbb{R}^3 \mid 2x+y-z=0\}$, $W_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x=y=z\}$ とするとき, $W_1 \cap W_2$ を $\langle v,w \rangle$ の形で表せ.
- 19. \mathbb{R}^3 において, $W_1 = \{(x,y,z) \in \mathbb{R}^3 \mid x-2y+3z=0\}$, $W_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x=y=z\}$ とするとき, $W_1 \cap W_2$ が $\{0\}$ となることを示せ.
- 20. \mathbb{R}^4 において, $W_1 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + 2y z 2w = 0\}$, $W_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x = y\}$ とするとき, $W_1 \cap W_2$ を $\langle v, w \rangle$ の形で表せ.