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ABSTRACT. In this paper, we study the Arnold invariant J+ for
plane and spherical curves. This invariant essentially counts the
number of a certain type of local moves called direct self-tangency
perestroika in a generic regular homotopy from a standard curve
to a given one; the other basic local moves, namely inverse self-
tangency perestroika and triple point crossing, do not change the
value of J+. Thus, behavior of J+ under local moves is rather
obvious. However, it is less understood how J+ behaves in the
space of curves on a global scale. We study this problem using
Legendrian knots, and give infinitely many regular homotopic
curves with the same J+ that cannot be mutually related by in-
verse self-tangency perestroika and triple point crossing.

1. INTRODUCTION

In this paper, we study the images of generic immersions (i.e., immersions such
that all of the self-intersections are transverse double points) from the circle S1 to
the plane R2 and the sphere S2, which we call plane curves and spherical curves,
respectively. Two curves are said to be regular homotopic if these are connected
by a homotopy that is an immersion all the time. Whitney [14] proved that
two plane curves are regular homotopic if and only if these curves have the same
rotation number. It is known that any regular homotopy can be changed (by
a small perturbation) into a finite sequence of three types of basic homotopies:
called a dR2-move, an iR2-move, and an R3-move (cf. Figure 2.2; we give a quick
review on these moves in Section 2.)

Arnold [3] introduced numerical invariants J+, J−, and St for plane curves
by carefully analyzing the space of immersions from S1 toR2, and further modified
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these invariants in order to obtain invariants J+S , J−S and StS for spherical curves
(see [5]). The Arnold invariants attracted much interest to a new aspect of curves,
and have been studied a lot for the last two decades: several explicit formulae of
the invariants were given in [10, 11, 13], higher-order versions were obtained in
[2, 6, 13], generalizations to fronts were studied in [1, 4, 10], and so on.

As we will see in Section 2, J+ (and thus the modified version J+S ) is invariant
under ambient isotopies, iR2-moves and R3-moves, but the values of J+ differ
by 2 between two curves if these curves are related by a dR2-move. Thus, for
two curves C1 and C2, the difference J+(C1)− J+(C2) gives a lower bound of the
number of dR2-moves in a generic regular homotopy between C1 and C2. The in-
variants J− and St (and the modified versions J−S and StS) have similar properties
(see Section 2). In particular, the Arnold invariants might be “obstructions” to the
existence of a generic regular homotopy consisting of specific types of moves for a
given two curves (cf. [3, p. 34]).

In order to further study the “obstructions” above, we introduce some rather
unusual equivalence relations of curves: for a set R of types of moves for curves,
two curves are said to be equivalent under R if one curve can be obtained from
the other by successive applications of moves in R. Several equivalence relations
of curves defined by restricted homotopies were studied in [7–9]. In this paper,
we especially focus on the equivalence relation under {iR2,R3}. This equivalence
relation is appropriate for Legendrian theory: dR2-moves are not allowed in Leg-
endrian regular homotopies between fronts. The rotation number of an oriented
plane curve is invariant under iR2-moves and R3-moves. For an oriented plane
curve C, we denote the rotation number of C by rot(C) ∈ Z. By the property in
the previous paragraph, J+ is also invariant under iR2-moves and R3-moves. We
will prove the following theorem.

Theorem 1.1. For any r ∈ Z and j+ ∈ 2Z, there exists an infinite family of
plane curves {Ci} that satisfies the following properties:

• rot(Ci) = r and J+(Ci) = j+ for any i.
• For any i, j with i ≠ j, Ci and Cj are not equivalent under {iR2,R3}.

For spherical curves, we can define the rotation number modulo 2, which is
invariant under regular homotopies, in particular under iR2-moves and R3-moves.
We denote the rotation number of a spherical curve C by rotS(C) ∈ Z/2Z. By
the definition of J+S (see Section 2), for a spherical curve C the value J+S (C) is
contained in V0 = Z if the rotation number rotS(C) is equal to 0, and is contained
in V1 = ( 1

2Z) \ Z otherwise.

Theorem 1.2. For any r ∈ Z/2Z and any j+ ∈ Vr , there exists an infinite
family of spherical curves {Ci} which satisfies the following properties:

• rotS(Ci) = r and J+S (Ci) = j+ for any i.
• For any i, j with i ≠ j, Ci and Cj are not equivalent under {iR2,R3}.

The proofs of Theorems 1.1 and 1.2 will be given in Section 5. In order
to detect difference between two curves up to equivalence under {iR2,R3}, we
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pay attention to isotopy classes of Legendrian knots in the unit tangent bundle
UTS2 of S2 (i.e., the set of the tangent vectors of length 1 for some Riemannian
metric of S2) associated with oriented spherical curves. In the proofs of Theorems
1.1 and 1.2, we will give infinite families of oriented curves such that all the
curves in a family have the same rotation number and the Arnold invariant, but
where the associated Legendrian knots are mutually not isotopic. (This strategy
for proving the main theorem should be compared with that in [8], in which
the authors associated equivalence classes of curves under R1-moves and weak
R3-moves with knots in S3 by positive resolution.) Note that we never make use
of contact structures of the unit tangent bundle for proving the main theorems:
we merely study isotopy classes of Legendrian knots in the proof. Since UTS2

is diffeomorphic to the real projective space RP3, UTS2 has the surgery diagram
consisting of a (+2)-framed unknot. In Section 3, we explain how to obtain a knot
diagram of the Legendrian knot associated with a given curve, which is drawn in
the surgery diagram of UTS2. The unit tangent bundle UTS2 has the universal
double cover from S3. By the covering homotopy property, if two links in UTS2

are isotopic, the preimages of them under the universal cover are also isotopic.
In Section 4, we give an algorithm to obtain a link diagram of the preimage of a
link in UTS2 under the universal cover, which enables us to detect the difference
between two Legendrian knots up to isotopy.

2. PRELIMINARIES

In this section, we set up basic notation and terminology that will be used in
this paper. Throughout the paper, we assume that manifolds are oriented and
connected, and maps between manifolds are smooth unless otherwise noted.

2.1. Framed links and surgery diagrams of 3-manifolds. By a link we
mean the image of an embedding from a disjoint union of oriented circles into a
closed 3-manifold. A link L is called a knot if L is connected. For a knot K in M ,
we denote the closure of a tubular neighborhood of K by νK ⊂ M . The isotopy
class of a circle in ∂νK intersecting the meridian of K in one point is called a
framing, and a knot with a framing is called a framed knot. A framing of a link
L is a disjoint union of framings of each component of L. We call a link with a
framing a framed link. A knot K ⊂ S3 has the canonical framing: the framing
K′ such that the linking number between K and K′ is 0. We denote this framing
by ℓ, and the positive meridian of K by m. Since any framing of K is uniquely
determined by its homology class in ∂νK, we can describe a framing of K by an
integer: the framing corresponding to the homology class p[m]+ [ℓ] is denoted
by p ∈ Z, which is called a framing coefficient.

We identify the sphere S3 with the one-point compactification R3∪{∞}. We
are interested in properties of links invariant under ambient isotopies of S3. Since
two links in S3 are isotopic in S3 if and only if these are isotopic in S3 \ {∞}, we
can assume that any link in S3 is away from ∞ without loss of generality. We can
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further assume that any link is in general position with respect to the projection
p : R3 → R2; that is, all the self-intersections of the image of a link under p are
transverse double points. For a knot K ⊂ S3, we call the image of K under p a
knot projection of K. We can add information of overpasses and underpasses to
each double point of a knot projection. A knot projection with such information
is called a knot diagram. Examples of a knot projection and knot diagrams are
shown in Figure 2.1.

(a) (b) (c)

FIGURE 2.1. Above are a knot projection (a), and knot dia-
grams (b) and (c). The knot described in (b) is isotopic to that
described in (c).

Let M be a 3-manifold. A framed knot K ⊂ M gives rise to a new 3-manifold
MK in the following way: we take a diffeomorphism Φ : S1 × ∂D2 → ∂νK such
that Φmaps the circle {∗}×∂D2 to the given framing of K (up to isotopy). Define
a 3-manifold MK as follows:

MK = (M \ Int(νK)) ∪Φ S1 ×D2.

It is not hard to see that the diffeomorphism type of MK does not depend on the
choice of Φ. The manifold MK is called a 3-manifold obtained by Dehn surgery
along K. We can define Dehn surgery along a framed link L ⊂ M in a similar
manner. It is known that any closed 3-manifold can be obtained by Dehn surgery
along a framed link L ⊂ S3. For a 3-manifold M , a link diagram (with framing
coefficients) of a framed link L that satisfies ML = M is called a surgery diagram of
M .

Let M be a 3-manifold and L0 a framed link in S3 that satisfies ML0 =M . We
can regard the complement S3\Int(νL0) as a subset ofM . It is easy to see that any
link L in M can be moved by an isotopy so that L is contained in S3 \ Int(νL0).
In particular, we can draw link diagrams L and L0 simultaneously. Such a diagram
is called a link diagram of L in a surgery diagram of M .

2.2. Regular homotopies of curves and the Arnold invariants. In this
subsection, we give a quick review for generic homotopies between curves and the
Arnold invariants. The reader can refer to [3, 4] for details on this subject.

For a curve C, we introduce three types of local moves, which are shown in
Figure 2.2.
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FIGURE 2.2. Three moves of curves.

The left move in Figure 2.2 can be realized by a regular homotopy which
experiences a self-tangency at an intermediate time. In this homotopy, the two
direction vectors have the same orientation at the self-tangency. This move is
called a direct self-tangency perestroika or simply a dR2-move. The middle move in
Figure 2.2 can be also realized by a regular homotopy with a self-tangency, but the
orientations of the two direction vectors do not coincide at the self-tangency. This
move is called an inverse self-tangency perestroika or an iR2-move. A dR2-move
or an iR2-move is said to be positive (respectively, negative) if the move increases
(respectively, decreases) the number of double points by 2.

The right move in Figure 2.2 is called a triple point crossing or an R3-move.
This move can be realized by a regular homotopy that experiences a triple point.
Although we can define positive and negative R3-moves, we will not discuss them
in this paper. For this reason, we omit the details of positivity and negativity for
R3-moves (the reader can refer to [3]).

It is known that any regular homotopy can be changed (by a small perturba-
tion) into a finite sequence of the three homotopies above together with ambient
isotopies. We call such a homotopy a generic regular homotopy.

Since two plane curves are regular homotopic if and only if these curves have
the same rotation number (see [14]), any plane curve with the rotation number
±i is regular homotopic to the plane curve ei (up to orientations) shown in Figure
2.3.

e0 e1 e2 e3 e4

FIGURE 2.3. The base curve ei of the rotation number ±i.

Theorem 2.1 ([3]). Denote by ni the number of double points of ei. For a
plane curve C ⊂ R2 with the rotation number i, we take a generic regular homotopy
H : S1 × [0,1]→ R2 from ei to C. Using H, we assign three integers J+(C), J−(C)
and St(C) to C as follows:

J+(C) = min{0,−2(|i| − 1)} + 2(d+ − d−),
J−(C) = min{0,−2(|i| − 1)} −ni − 2(i+ − i−),
St(C) = max{0, |i| − 1} + t+ − t−,
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where d±, i± and t± are the numbers of positive/negative dR2-moves, iR2-moves, and
R3-moves in H, respectively. Then, the integers J±(C) and St(C) do not depend on
the choice of a generic regular homotopy H.

By Theorem 2.1 the integers J±(C) and St(C) are invariants of (an isotopy
class of ) a plane curve C. These invariants are called the Arnold invariants for
plane curves.

We can also define similar invariants for spherical curves. For a spherical curve
C ⊂ S2, we take a point x ∈ S2 \ C, and denote by Cx ⊂ R the image of C under
the stereographic projection from x. We assign integers J±S (C) and StS(C) as
follows:

J+S (C) = J+(Cx)+
rot(Cx)2

2
,

J−S (C) = J−(Cx)+
rot(Cx)2

2
,

StS(C) = St(Cx)−
rot(Cx)2

4
.

It is known that the integers J±S (C) and StS(C) do not depend on the choice of
a point x (cf [5]). For this reason, these are invariants for (isotopy classes of )
spherical curves, which are also called the Arnold invariants for spherical curves.

3. LEGENDRIAN KNOTS IN THE UNIT TANGENT BUNDLE OF S2

Denote by UTS2 ⊂ TS2 the unit tangent bundle of S2. In this section, we give an
algorithm to obtain a diagram of the Legendrian knot in UTS2 associated with an
oriented curve.

We begin by reviewing Legendrian knots. For an oriented spherical curve C,
we take a generic immersion f : S1 → S2 so that the image of f is C and so that the
orientation of C induced by that of S1 coincides with the given orientation. We
denote the derivative of f by df : TS1 → TS2. Since f is an immersion, df(p)
is everywhere non-zero, and we can compose the projection π : TS2 \S2 → UTS2

to df , where we identify S2 with the 0-section of TS2. Since f is generic, the
composition π ◦ df : S1 → UTS2 is an embedding, where we identify the set of
unit positive vectors with S1 so that we can regard S1 as a subset of TS1. The
image of the composition π ◦df is a knot in UTS2. This knot, which is denoted
by KC , is called the Legendrian knot associated with C.

Remark 3.1 (The canonical framing of KC and its relation with J+). Since
KC is a Legendrian knot with respect to the canonical contact structure of UTS2,
this knot has the canonical framing that is induced by a vector field everywhere
transverse to the contact plane. This framing can be obtained in the following
way: we can take a vector field V on C ⊂ S2 so that, for any point p ∈ C, Vp
and the unit positive tangent vector of C at p span the tangent space of S2. This
vector field can be lifted to that of KC via dπ . A parallel shift of KC along this
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lift is a framing of KC . It is easy to see that this framing does not depend on the
choice of V and its lift, and coincides with the canonical framing of KC .

Arnold [3,4] proved that, for a plane curve C, the invariant J+(C) is equal to
1−β(KC), where β(KC) is the Bennequin-Tabachnikov number of the Legendrian
knot KC introduced in [12]. This invariant is defined as follows: for a Legendrian
knot L in UTR2, we take points p1, . . . , ps ∈ R2 sufficiently far from the origin
and a 2-chain ∆ bounding the union L ∪ (

⊔
i p

−1(pi)), where p : UTR2 → R2

is the projection. Then, β(L) is defined to be the intersection number between ∆
and a parallel shift of L along the canonical framing.

It is easy to prove the following proposition by the local pictures of R3-moves
and iR2-moves.

Proposition 3.2. If two spherical curves C0, C1 ⊂ S2 are equivalent under
{iR2,R3}, then the corresponding Legendrian knots KC0 and KC1 are Legendrian
isotopic; in particular, these are isotopic (as framed knots) in UTS2.

Remark 3.3. It is also easy to prove that a dR2-move for a curve in S2 corre-
sponds with a crossing change to the corresponding Legendrian knot.

The projection p : UTS2 → S2 is an S1-bundle over S2 whose Euler number
is 2 (the orientation of UTS2 is derived from that of S2). Thus, the manifold
UTS2 has a surgery diagram which consists of an unknot with framing 2. For a
curve C ⊂ R2 ⊂ S2, we take a sufficiently large disk D ⊂ R2 that contains C. The
restriction p|p−1(D) : p−1(D) → D is the trivial S1-bundle, and the submanifold
p−1(D) coincides with the complement of the framed unknot (which is a solid
torus) in the surgery diagram of UTS2. We fix a trivialization p−1(D) ≅ D × S1,
and call each disk D × {∗} a sectional disk. We take an identification of UTS2

with the manifold described by the diagram ©+2, so that the set of horizontal
vectors in D ⊂ R

2 oriented from right to left coincides with the sectional disk
that contains the infinity ∞ ∈ S3. The fiber of UTS2 at a point p0 ∈ D is
the set of unit tangent vectors at p0, and this fiber is oriented counterclockwise
since the orientation of UTS2 is derived from that of S2. We identify this fiber
with the unit circle S1 ⊂ C in the obvious way. We can assume that the set
{exp(

√
−1θ) ∈ S1 | θ ∈ (−π + ε,π − ε)} ⊂ S1 ≅ p−1(p0) is projected to a

point q0 in the diagram ©+2 for a sufficiently small ε > 0. It is easy to see that,
for θ0, θ1 ∈ (−π + ε,π − ε), a point exp(

√
−1θ0) is behind a point exp(

√
−1θ1)

in the diagram ©+2 if θ0 < θ1. Eventually, we can obtain a knot diagram of KC
in the surgery diagram ©+2 in the following way:

• A knot projection that is derived from KC coincides with a diagram of
C ⊂ D ⊂ R2 except in neighborhoods of points at which C has a horizon-
tal direction vector oriented from right to left, and this knot projection is
drawn inside the (+2)-framed unknot.

• At each double point q of the knot projection, the curve with direction
vector exp(

√
−1θ0) goes behind the other curve with direction vector
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exp(
√
−1θ1) if θ0, θ1 ∈ (−π + ε,π − ε) and θ0 < θ1, where we identify

the fiber of UTS2|D with the unit circle S1 ⊂ C in the same way as above.
• In the preimage (under p) of a neighborhood of each point at which C

has a horizontal direction vector oriented from right to left, KC travels
along the fiber of the projection p : UTS2 → S2 once, following the rule
shown in Figure 3.1.

FIGURE 3.1. Left: diagrams of C in R2. Right: knot diagrams
of KC in the surgery diagram ©+2.

Note that the framing of KC is along sectional disks. An example of a pair of
a spherical curve and the corresponding framed knot is shown in Figure 3.2.

By regarding R2 as a subset of S2 = R2 ∪ {∞}, we can thus obtain a knot
KC ⊂ UTS2 and a diagram of KC drawn in the surgery diagram ©+2. Under
the identification given in the previous paragraph, when a curve C is deformed
by a sequence of R3-moves, iR2-moves, and isotopies in R2 (namely, isotopies in
S2 fixing the point ∞ ∈ S2), the associated knot KC is deformed by isotopies in
UTS2 avoiding the core of solid torus attached by the surgery. This observation
yields the following proposition.

Proposition 3.4. If there are two plane curves C0, C1 ⊂ R2 equivalent under
{iR2,R3}, then there exists an ambient isotopy in UTS2 that deforms KC0 to KC1 and
keeps the torus attached by the surgery fixed.

Since the Legendrian knot KC is contained in the complement of a regular
neighborhood of (+2)-framed unknot, which is regarded as a subset of S3, we can
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FIGURE 3.2. Left: a spherical curve. Right: the associated knot
in UTS2. The dotted curve describes the framing.

regard KC as a framed knot in S3. From Proposition 3.4, we immediately obtain
the following corollary.

Corollary 3.5. Under the same assumption as in Proposition 3.4, there exists an
ambient isotopy in S3 that deforms KC0 to KC1 and keeps the (+2)-framed unknot
fixed. In particular, KC0 and KC1 are isotopic as framed knots in S3.

4. THE UNIVERSAL COVER OF UTS2 AND KNOT DIAGRAMS

Since the Euler number of the S1-bundle p : UTS2 → S2 is 2, and in particular
UTS2 is diffeomorphic to RP3, the universal cover of UTS2 is a double cover from
S3, which we denote by q : S3 → UTS2. In this section, we explain how to obtain
a link diagram of the preimage of a knot K in UTS2 under q from a knot diagram
of K in the surgery diagram ©+2.

For a knot K in UTS2, we denote the preimage of K under q by K̃ ⊂ S3.
Note that K̃ is a 2-component link if K is null-homologous in UTS2, and a knot
otherwise. Any knot K has a knot diagram in the surgery diagram ©+2 as shown
in the left side of Figure 4.1 (in other words, any knot in UTS2 can be obtained
by taking band sums between a knot contained in a small ball in UTS2 and some
meridians of the framed unknot).

The compositionp◦q : S3 → S2 is an S1-bundle over S2 whose Euler number
is 1. Since the covering map q : S3 → UTS2 preserves fibers, the covering trans-
formation T : S3 → S3 acts on each fiber of p ◦ q by multiplication of −1 ∈ S1.
Thus, we can obtain a diagram of K̃ as shown in the right side of Figure 4.1, where
the shaded box outside the framed unknot contains a diagram of the image of a
tangle contained in the shaded box inside the unknot under T .

Both the diagram ©+1 and the empty diagram describe S3, and these dia-
grams are related by blowing down. Thus, in order to obtain a usual link diagram
of K̃ (i.e., a diagram of K̃ ⊂ S3 derived from the projection S3 \ {∞} → R2), we
have to blow down K̃ along the (+1)-framed unknot. In Figure 4.2, we describe
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FIGURE 4.1. Left: a diagram of K in UTS2. Right: a diagram
of the preimage under q.

a diagram of the preimage of the knot in the right side of Figure 3.2 under q,
obtained by the above procedure.

FIGURE 4.2. An example of the preimage of a knot in UTS2

under q.

5. INFINITELY MANY CURVES WITH THE SAME VALUES OF THE

INVARIANTS

In this section, we prove Theorems 1.1 and 1.2.
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Proof of Theorem 1.1. We first note it is sufficient to prove the statement of
Theorem 1.1 for non-negative integer r . Indeed, if a family of oriented plane
curves satisfies the desired conditions, the family consisting of the same curves
with the opposite orientations also satisfies the conditions in Theorem 1.1. For
this reason, we only give a proof for the case where r is non-negative.

For non-negative integers a, b, and c, we define a curve C(a,b, c) by Figure
5.2, where tangles (a), (b), and (c) are defined by the local figures in Figure 5.1,
and x = a, b, or c is the number of tangles labeled by (x).

FIGURE 5.1. Tangles (a), (b) and (c)

… …

…

FIGURE 5.2. C(a,b, c)

The rotation number of C(a,b, c) is a − 1. Moreover, it is easy to see that
J+(C(a, b + 1, c)) − J+(C(a, b, c)) is equal to −2, while J+(C(a, b, c + 1)) −
J+(C(a, b, c)) is equal to 2 for any a,b, c ≥ 0. Thus, we can find non-negative
numbers b0 and c0 such that the value J+(C(r + 1, b0, c0)) is equal to j+. Fur-
thermore, by the observation above, all the curves in the family

{C(r + 1, b0 + k, c0 + k)}k≥0

have the same rotation number and the same value of the invariant J+.
We can obtain the diagram of KC(r+1,b0+k,c0+k), by the algorithm given in

Section 3, as shown in Figure 5.3.
The diagram shows that KC(r+1,b0+k,c0+k) is the (2,2(c0+k)+3)-torus knot,

where we regard this knot as that in R3 (see Proposition 3.4 and the paragraph
preceding it); in particular, KC(r+1,b0+k1,c0+k1) and KC(r+1,b0+k2,c0+k2) are isotopic
if and only if k1 = k2. By Proposition 3.4, we have that any two curves in the
family {C(r + 1, b0 + k, c0 + k)}k≥0 are not equivalent under {iR2,R3}. This
completes the proof of Theorem 1.1. ❐
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FIGURE 5.3. The diagram of KC(r+1,b0+k,c0+k).

We next give a proof of Theorem 1.2.

Proof of Theorem 1.2. By regarding S2 as the one-point compactification of
R

2, we think of the curve C(a,b, c) as a spherical curve. As in the proof of
Theorem 1.1, it is easy to verify that J+S (C(a, b+ 1, c))− J+S (C(a, b, c)) is equal
to −2, while J+S (C(a, b, c+1))−J+S (C(a, b, c)) is equal to 2 for any a,b, c ≥ 0.

We first prove the statement for the case r = 0. By the observation above,
we can find non-negative integers b1 and c1 such that the value J+S (C(1, b1, c1))
is equal to j+. Furthermore, the value of the invariant J+S is the same for all
the curves in the family {C(1, b1 + k, c1 + k)}k≥0. The diagram of the preimage
q−1(KC(1,b1+k,c1+k)) under the universal cover q : S3 → UTS2 obtained by the
algorithm in Section 4 is described in Figure 5.4.

…

…

FIGURE 5.4. The diagram of KC(1,b1+k,c1+k).

It is easy to see that the linking number between the two components of
q−1(KC(1,b1+k,c1+k)) is equal to −2(k + c1). Thus, q−1(KC(1,b1+k1,c1+k1)) and
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q−1(KC(1,b1+k2,c1+k2)) are isotopic if and only if k1 = k2. Since any isotopy be-
tween two links in UTS2 can be lifted to that of the preimage of them under
q, KC(1,b1+k1,c1+k1) and KC(1,b1+k2,c1+k2) are isotopic if and only if k1 = k2. By
Proposition 3.2, any two spherical curves in the family {C(1, b1 + k, c1 + k)}k≥0

are not equivalent under {iR2,R3}.
We next prove the statement for the case r = 1. In the same way as in the

previous paragraph, we can find non-negative integers b2 and c2 such that the
value J+S (C(2, b2 + k, c2 + k)) is equal to j+ for any k ≥ 0. The diagram of the
preimage q−1(KC(2,b2+k,c2+k)) obtained by the algorithm in Section 4 is described
in Figure 5.5. We can deduce from this diagram that q−1(KC(2,b2+k,c2+k)) is the

FIGURE 5.5. A diagram of the preimage q−1(KC(2,b2+k,c2+k)).

connected sum of two (2,2(c2 + k) + 3)-torus knots. The Jones polynomial of
this knot is equal to the square of the polynomial of the (2,2(c2 + k) + 3)-torus
knot, which is equal to t−(c2+k)−1 − t−(c2+k)−4 − t−3(c2+k)−5 + t−3(c2+k)−6.

In particular, q−1(KC(2,b2+k1,c2+k1)) and q−1(KC(2,b2+k2,c2+k2)) are isotopic if
and only if k1 = k2. Thus, any two curves in the family {C(2,b2+k,c2+k)}k≥0 are
not equivalent under {iR2,R3}. This completes the proof of Theorem 1.2. ❐

Remark 5.1. For non-negative integers a,b, c, the Arnold invariants of the
plane curve C(a,b, c) are calculated as follows:

J+(C(a, b, c)) = −2b + 2c,

J−(C(a, b, c)) = −4b − a− 4,

St(C(a, b, c)) = b + 1.

In particular, any two curves in the family {C(r+1, b0+k, c0+k)}k≥0 (constructed
in the proof of Theorem 1.1) have different values of the invariants J− and St.

As explained in Section 3, we can regard KC as an oriented knot in S3 for a
plane curve C. We denote the framing coefficient of the canonical framing of KC
by fr(C), and the linking number of KC with the (+2)-framed unknot by lk(C).
These numbers are clearly invariants of equivalent classes of plane curves under
{iR2,R3}.
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Corollary 5.2. As an invariant of equivalent classes of plane curves under
{iR2,R3}, the pair (fr(C), lk(C), VKC ) is stronger than (rot, J+), where VKC is the
Jones polynomial of KC .

Proof. It is sufficient to prove that fr(C) and lk(C) are equal to β(KC) and
rot(C), respectively, where β(KC) is the Bennequin-Tabachnikov number of KC
(see Remark 3.1). We take a Seifert surface Σ ⊂ S3 of KC intersecting the (+2)-
framed unknot K0 transversely. The framing coefficient fr(KC) is equal to the
intersection number K̃C ·Σ, where K̃C is a parallel shift of KC along the canonical
framing. On the other hand, by the definition, we have that β(KC) is equal to
K̃C · (Σ \ (

⊔
qDq)), where Dq is a small disk neighborhood of q ∈ Σ ∩ K0 in Σ.

Thus, fr(C) is equal to β(KC).
Let π : R2 → R be the projection onto the vertical axis. We denote by LM

(respectively, Lm) the set of local maxima (respectively, minima) of the restriction
π|C at which C goes from right to left with respect to the given orientation. It is
not hard to see that the rotation number of C is equal to ♯LM − ♯Lm. According
to the algorithm, to obtain the knot KC from C given in Section 3, lk(C) is also
equal to ♯LM − ♯Lm (see Figure 3.1). ❐
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