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Abstract. A chord diagram is a circle with paired points with each pair of

points connected by a chord. Every generic immersed spherical curve pro-

vides a chord diagram by associating each chord with two preimages of a

double point. Any two spherical curves can be related by a finite sequence

of three types of local replacement RI, RII, and RIII, called Reidemeister

moves. This study counts the difference in the numbers of sub-chord dia-

grams embedded in a full chord diagram of any spherical curve by applying

one of the moves RI, strong RII, weak RII, strong RIII, and weak RIII defined

by connections of branches related to the local replacements (Theorem 1.1).

This yields a new integer-valued invariant under RI and strong RIII that

provides a complete classification of prime reduced spherical curves with up

to at least seven double points (Theorem 1.2, Fig. 24): there has been no

such invariant before. The invariant expresses the necessary and sufficient

condition that spherical curves can be related to a simple closed curve by a

finite sequence consisting of RI and strong RIII (Theorem 1.3). Moreover, in-

variants of spherical curves under flypes are provided by counting sub-chord

diagrams (Theorem 1.4).

1. Introduction.

Any two knot projections (equivalently, generic immersed spherical curves) are
related by a finite sequence of three types of local replacement, RI, RII, and RIII,
called Reidemeister moves, on knot projections. These replacements are defined
by Fig. 1.
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RI RII RIII

Figure 1. Reidemeister moves RI, RII, and RIII from the left.

A chord diagram is a circle with chords with endpoints at different places on
the circle. Chord diagrams are often used to study knots or knot projections.
A chord diagram CDP of a knot projection, P , is a circle with the preimages of
double points for which every pair of double-point preimages is connected by an
arc. Examples are shown in the leftmost columns of Figs. 22 and 23. In this
paper, a sub-chord diagram of CDP is a chord diagrams embedded in CDP .

This paper exhibits characteristics of chord diagrams ⊗, f, f, and funder
five types of Reidemeister moves. In particular, we split the second (resp., third)
Reidemeister move into the strong and weak second (resp., third) Reidemeister
moves, as follows. The strong (resp., weak) second Reidemeister move, strong
RII (resp., weak RII), is defined as the local replacement in Fig. 2. The strong

strong RII weak RII

Figure 2. Strong (left) and weak (right) second Reidemeister
moves. Dotted arcs indicate the connections of the branches.

(resp., weak) third Reidemeister move, strong RIII (resp., weak RIII), is defined as
the local replacement in Fig. 3.

strong RIII weak RIII

Figure 3. Strong (left) and weak (right) third Reidemeister
moves. Dotted arcs indicate the connections of the branches.

Now we state some new results. Theorem 1.2 gives a new integer-valued in-
variant λ(P ) that provides a complete classification of all prime reduced knot
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projections with up to seven double points under the equivalence relation in-
duced by RI and strong RIII (strong (1, 3) homotopy [3]), as shown in Fig. 24.
Throughout this paper, let x(P ) be the number of sub-chord diagrams, each of
which is a chord diagram x = ⊗, f, f, f, or f in CDP of an arbitrary knot
projection P .

Theorem 1.1. The increments or decrements under one first, weak second,
strong second, weak third, and strong third Reidemeister moves are shown in
Fig. 4, respectively, where m is an integer.

RI
strong
RII

weak
RII RIII

strong weak
RIII

13
cross chord

triple chord

H-chord

   Ⅲ-chord

0

0

0

0 even even even even

even even even even

even odd odd odd

4m - 1   4m ± ±

Figure 4. Difference under several types of Reidemeister moves.
m is an integer.

Theorem 1.2 is based on Theorem 1.1 and the discussion preceding it.

Theorem 1.2.

[3 f(P ) − 3 f(P ) + ⊗(P )]/4

is an integer λ(P ) that is invariant under RI and strong RIII.

We remark that there has been no non-trivial integer-valued invariant, such as
λ(P ), under RI and strong RIII before. The invariant λ(P ) is additive (Proposi-
tion 4.2) and has the following important properties.

Below, using the invariant H(P ) defined in [3] and introducing X̃(P ), we have
the following result, when λ(P ) = 0 (note that λ(P ) = 0 if X̃(P ) = 0).
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Theorem 1.3. Let P be an arbitrary knot projection. A map H (resp., X̃) from
the set of all the knot projections to {0, 1} is defined by the condition H(P ) = 0
(resp. X̃(P ) = 0) if and only if f(P ) = 0 (resp., ⊗(P ) = 0). Then H(P )
(resp., X̃(P )) is invariant under RI and strong RIII (resp., weak RIII) and we
have the following four necessary and sufficient conditions:

H(P ) = 0 and λ(P ) = 0 ⇔ P can be related to gby using RI and strong RIII,f(P ) = 0 and λ(P ) = 0 ⇔ P can be related to gby using RI,

X̃(P ) = 0 ⇔ P can be related to gby using RI and weak RIII, and

X̃(P ) = 0 ⇔ P can be related to gby using RI

where gdenotes a simple closed curve on a sphere.

We also focus on sub-chord diagrams ⊗, f, f, f, and f, each of which has
an invariance property under flypes, where a flype is a local replacement on knot
projections as shown in Fig. 5.

T
T

Figure 5. Flype.

Theorem 1.4. ⊗(P ), f(P ), f(P ), f(P ), and f(P ) are invariant under any
flype.

Corollary 1.5. λ(P ) is invariant under any flype.

The remainder of this paper contains the following sections. Theorem 1.1,
1.2, 1.3, and 1.4 are proved in Secs. 2, 3, 4 and 5, respectively. Sec. 1.4 also
mentions properties of λ, and Sec. 6 comments on the behavior of Averaged
invariant −(J+ +2St)/2 consisting of Arnold’s invariants J+ and St. Finally, we
present a table of prime reduced knot projections with up to seven double points,
counting each type of sub-chord diagram embedded in a chord diagram of each
knot projection.

2. Proof of Theorem 1.1.

Proof. The sub-chord diagrams ⊗, f, f, and f are called a cross chord, a
triple chord, an H-chord, and a III-chord, respectively. Throughout this proof, ∆ch
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RI

Figure 6. RI on chord diagrams.

strong RII
α β

Figure 7. Strong RII on chord diagrams.

and ∆ch(x) are the difference of two numbers of embedded sub-chord diagrams
and of embedded sub-chord diagrams specified by x, respectively, under a single
local move that we focus on, where x = ⊗, f, f, and f.

(1) RI (Fig. 6). Consider the first column of the table in Fig. 4. Move RI does
not affect ⊗(P ), f(P ), f(P ), or f(P ) for an arbitrary knot projection
P . This implies that ∆ch = 0 for every box in the first column.

(2) Strong RII (Fig. 7). Consider the second column of the table in Fig. 4.
We separate the cases based on the number of chords that relate to a
strong RII and belong to the new chord from the left to the right in
Fig. 7.

• ⊗. Any cross chord as a sub-chord cannot contain both chords α and
β in Fig. 7. Additionally, a chord crossing α (resp., β) should also
cross β (resp., α). We will call this type of the argument the duality
(α, β). Thus, the difference in ⊗(P ) of a knot projection P by one
strong RII should be even. Moreover, ∆ch(⊗) = 4m (m ∈ Z). The
reason is as follows.
See Fig. 8. For any knot projection P , if P has α on the right of
Fig. 8, then the number of chords of CDP crossing α of CDP in
the left figure of Fig. 8 is even. This is because for two component
spherical curves, if a component of an immersed spherical curve in-
tersects another component, the number of double points consisting
of two components is even (Fig. 9). By referring either α or β to α

of Fig. 8, ∆ch(⊗) = 4m (m ∈ Z).
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α
α

P CDP

Figure 8. Correspondence between a double point of a knot
projection P and a chord of chord diagram CDP .

α

Figure 9. Smoothing at a double point. The number of inter-
sections of two dotted knot projections is even.

• f, f, and f. Since one strong RII consists of two RIs, a strong
RIII, and a weak RII, then ∆ch( f) = even, ∆ch( f) = even, and
∆ch( f) = even by using results for RI, strong RIII, and weak RII.

(3) Weak RII (Fig. 10). Consider the third column of the table in Fig. 4.

weak RII
α β

Figure 10. Weak RII on chord diagrams.

• ⊗. Let α and β be chords specified in Fig. 10. If ⊗ consists of
α (resp., β) and the other chord e is not β (resp., α), there exists
another ⊗ consisting of β (resp., α) and e (the argument of the
duality (α, β)). The number of the sub-chord ⊗ consisting of α and
β is one. Then, ∆ch(⊗) is odd. Moreover, ∆ch(⊗) = 2(2m − 1) + 1
= 4m − 1 (m ∈ Z≥1) by the argument regarding Figs. 8 and 9.

• f. We split the cases by how many increased chords belong to the
new f from the left to the right in Fig. 10.

– (one chord in the new.) By the duality (α, β), the contribution
to the difference is an even number of chords.
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– (two chords in the new.) The number of chords such as A

shown in Fig. 11 is odd by the argument regarding Figs. 8 and
9 (cf., case ⊗ of strong RII).

α β

A A

Figure 11. Appearance of chord A on the right of Fig. 10 under
weak RII.

• f. There is no possibility that both α and β are contained in the
new f from the left to the right in Fig. 10. Then we consider the
duality (α, β), which implies ∆ch( f) = even.

• f. This case is very similar to the above f case, ∆ch( f) = even.
(4) Strong RIII (Fig. 12). Consider the fourth column of the table in Fig. 4.

strongRIII

Figure 12. Strong RIII on chord diagrams.

• ⊗. Fig. 12 directly implies ∆ch(⊗) = ±3 (as in [3]).
• f. We split the cases by the number of chords that relate to the

strong RIII and belong to the new f from right to left in Fig. 12.
– (one chord related to the new). By Fig. 12, ∆ch( f) = 0 in

this case.
– (two chords related to the new). In this case, for each chord

X shown in Fig. 13, the difference is one from left to right in
Fig. 13 (using symmetry, it is sufficient to consider Fig. 13).
We show that the number of such X is even, as follows. First,
we apply the same argument as for Figs. 8 and 9 to the leftmost
figure of Fig. 3. The operation illustrated in Fig. 14 is useful for
showing this. After the operation illustrated in Fig. 14, two
of three components intersect at even double points, which
implies the number of chords such as X is even. Since each X

produces the difference ±1, the difference is even in this case.
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strongRIII

x

x

x

x

Figure 13. Chord X appearing in strong RIII.

Figure 14. Resolutions of three double points.

– (three chords related to the new). Only one fbelongs to the
new f.

As a result, ∆ch( f) = odd.
• f. We separate the cases based on the number of chords, in f, that

related to the difference between the left and the right of Fig. 12.
– (one chord related to the difference) By Fig. 12, ∆ch( f) = 0.
– (two chords related to the difference) The discussion is very

similar to the case of f. Consider Fig. 13. For each X, the
difference in the number of H-chords is ±1 (from two H-chords
(left) to one H-chord (right) in Fig. 13). The number of such
X is even by the fact that we showed in the case of f. As a
result, ∆ch( f) = even.

– (three chords related to the difference) In this case, there is no
difference contributing to ∆ch( f) and ∆ch( f) = 0.

• f. We divide the cases by how many chords in f relate to the
difference under one strong RIII.

– (one chord related to the difference) In this case, the number
of III-chords does not change under strong RIII.

– (two chords related to the difference) Consider Fig. 15. As
in Fig. 15, the difference in the number of III-chords is ±2 for
each pair (X, X ′). Therefore, for all pairs matching (X, X ′),
the difference of the sum is even.
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strongRIII

x

x

x

x

x’

x’

x’

x’

Figure 15. Appearance of two parallel chords X and X ′ un-
der strong RIII. Two III-chords, both including X and X ′, are
contained on the left hand side.

We consider another type of possibility, as shown in Fig. 16.
For each chord X, using Figs. 8 and 9 that is frequently used

strongRIII

x xY

Y

x xY

Y

Figure 16. Appearance of X-type and Y -type chords under
strong RIII. A III-chord including X and Y is contained on the
right hand side.

above, the number of Y -type chords shown in Fig. 16 is even.
The detailed explanation is as follows. See Fig. 17. First, ap-
ply the operation shown in Fig. 14 to the considered diagrams.
Second, select the curve C1 containing the chord X. Third, in
the curve C1, apply the operation shown in Fig. 9 to the dou-
ble point corresponding to X. Now we have four component
curves, of which, two curves intersect at even double points.
This is why the number of Y -type chords is even. Then, for

⇒

C

＝ ⇒
x

1

Figure 17. The number of Y -type chords is even.

each such X, the difference is even. Therefore, the difference
of the sum ∆ch( f) is even.
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– (three chords related to the difference) There is no possible
case.

As a result, ∆ch( f) = even.
(5) Weak RIII (Fig. 18). Finally, count the difference in ∆ch under one weak

RIII.

weakRIII

Figure 18. Weak RIII on chord diagrams.

• ⊗. From Fig. 18, ∆ch(⊗) = ±1.
• f, f, and f. Since one weak RIII consists of two strong RIIs and a

strong RIII, ∆ch( f) = odd, ∆ch( f) = even, and ∆ch( f) = even.
�

Remark. [3] contains the results for the first, strong third, and weak third Reide-
meister moves on ⊗.

Remark. Using Theorem 1.1, we can easily create some invariants of knot pro-
jections in simple ways. Observing the table in Fig. 4, ⊗(P ) ≡ f(P ) (mod 2)
and we notice that ⊗(P ) (mod 2), equivalently f(P ) (mod 2), is invariant under
the first and strong second moves. ⊗(P ) (mod 3) is invariant under the first
and strong third moves, introduced in [3]. ⊗(P ), f(P ), f(P ), and f(P ) are
invariants under the first move.

3. Proof of Theorem 1.2.

Proof. To show Theorem 1.2, we check the difference of

3 f(P ) − 3 f(P ) + ⊗(P )

under Reidemeister moves RI, strong RIII, strong RII, weak RII, and weak RIII in
that order.

• RI. There is no change of ⊗(P ) under RI, and then neither f(P ) norf(P ) changes under RI.
• Strong RIII. Consider Fig. 13. Four chords consisting of a dotted chord

X, called an X-type chord, and three other chords, called RIII chords, are
depicted explicitly. In addition, recall that the difference in ⊗(P ) of a
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knot projection P under strong RIII is exactly ±3 supplied by three RIII
chords.

– Difference of contributions by two non-RIII chords and one RIII chord.
There are no changes with respect to ⊗(P ), f(P ), and f(P ), re-
spectively.

– Difference of contributions by one non-RIII chord and two RIII chords.
It is sufficient to consider the difference of contributions by one X-
type chord and two RIII chords.

x x(left) − x(right) in Fig. 13f(P ) 1f(P ) 1
⊗(P ) 0

Thus, there is no difference of 3 f(P )− 3 f(P ) +⊗(P ) in this case.
– Difference of contributions by three RIII chords.

x x(left) − x(right) in Fig. 13f(P ) 0f(P ) 1
⊗(P ) 3

Thus, there is no difference of 3 f(P )− 3 f(P ) +⊗(P ) in this case.
• Strong RII. Consider Fig. 19.

strong RII

strong RII

strong RII

α β

α β

α β

XX X X

Figure 19. Dotted chord in the top line: sticking chord X,
dotted chords in the middle line: a pair of cross chords, dotted
chords in the bottom line: a pair of parallel chords.

– (Top line of Fig. 19) We can assume that the number of chords
crossing both α and β, called sticking chords, is 2m (m ∈ Z≥0) by
the discussion with respect to Figs. 8 and 9.
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First, we count the difference caused by the tuple, each of which
consists of one sticking chord, α, and β.

x x(right)-x(left) in Fig. 19f(P ) 2mf(P ) 0
⊗(P ) 4m

– (Center line of Fig. 19) Count the difference with respect to tuples,
each of which consists of either α or β and two sticking chords that
mutually intersect and respectively intersect both α and β (Fig. 19,
the center line). Assume that such l pairs in all the

(
2m
2

)
pairs are

types as the center of Fig. 19.
x x(right) − x(left) in Fig. 19f(P ) 0f(P ) 2l

⊗(P ) 0
– (Bottom line of Fig. 19) Consider (

(
2m
2

)
− l) pairs, as in the bottom

line of Fig. 19.
x x(right) − x(left) in Fig. 19f(P ) 2(

(
2m
2

)
− l)f(P ) 0

⊗(P ) 0
Therefore, the difference is

3{2(
(

2m

2

)
− l) + 2m} − 3 · 2l + 4m = 12m2 + 4m − 12l.

• Weak RII. Since weak RII consists of two RIs, a strong RIII, and three
strong RIIs, the difference of 3 f(P ) − 3 f(P ) + ⊗(P ) is 4n (n ∈ Z≥0)
under one weak RII.

• Weak RIII. Since one weak RIII consists of two strong RIIs and a strong
RIII, the difference of 3 f(P )− 3 f(P ) +⊗(P ) is 4n (n ∈ Z≥0) under one
weak RIII.

Any knot projection P is related to a simple closed curve gby a finite sequence
consisting of RI, RII, and RIII. RII (resp., RIII) consists of strong and weak RII
(resp., RIII). Now we have that each difference of RI, RII, and RIII is 4k (k ∈ Z)
and 3 f( g) − 3 f( g) + ⊗( g) = 0. The conditions complete the proof. �
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4. Proof of Theorem 1.3 and properties of λ.

Proof. First, we recall that H(P ), (resp., X̃(P )) is invariant under RI and strong
RIII (resp., weak RIII).

• Invariance of H(P ) (cf. [3]). By Theorem 1.1, H(P ) is invariant under
RI.

Now we assume that H(P ) = 0 on the right of Fig. 13. In this case, no
X-type chord can appear in Fig. 13. Then, no RIII chords can be involved
with producing fon the right of Fig. 12. If three non-RIII chords comprisef in the right chord diagram in Fig. 12, the right chord diagram has f,
which is contradicts H(P ) = 0. Thus, we notice that CDP has no f in
the right of Fig. 12 if and only if there is no X-type chord and no tuple
of three non-RIII chords comprising any f. We can also say that CDP

has no f on the left of Fig. 12 if and only if there is no X-type chord
and no tuple of three non-RIII chords comprising any f. Therefore, when
we denote the left (resp., right) knot projection by Pl (resp., Pr) of the
arrow of strong RIII in Fig. 3,

H(Pl) = 0 ⇔ H(Pr) = 0.

Thus,
H(Pl) = 1 ⇔ H(Pr) = 1.

• Invariance of X̃(P ). By Theorem 1.1, X̃(P ) is invariant under RI. Every
chord diagram appearing in Fig. 18 always satisfies X̃(P ) = 1.

Second, we recall one of the facts from Sakamoto-Taniyama [5, Theorem 3.2].

Fact 1 (Sakamoto-Taniyama [5]). Let P be an immersed plane curve. A chord
diagram CDP does not contain fif and only if P is equivalent to any connected
sum of some plane curves, each of which is equivalent to one of the plane curves
as g, ∞, P1, P2, P3, . . . as illustrated in Fig. 20.

PPP1 2 3

Figure 20. (2, 2i + 1)-torus knot projection Pi.
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Notice that the same claim holds for knot projections with any possible choice
of exterior region.

H(P ) = 0 ⇔P is any connected sum of knot projections, each of which is

an element of T = { g,∞, Pi (1 ≤ i ∈ Z)}.

Now, we prove the first formula of Theorem 1.3. Assume that H(P ) = 0 and
λ(P ) = 0. In this case, it is sufficient to consider any connected sum of elements
in T . Note that λ(P]P ′) = λ(P ) + λ(P ′), where P]P ′ is the connected sum of
P and P ′. Thus λ(P ) < 0 if P is a connected sum of knot projections satisfying
H(P ) = 0 and at least one member is P2i+1 (i > 1). This is because λ( g) =
λ(∞) = 0 and 4λ(P2i+1) = −3 f(P2i+1) + ⊗(P2i+1) = −3

(
2i+1

3

)
+

(
2i+1

2

)
=

i(2i + 1)(1 − i). Then, if H(P ) = λ(P ) = 0, P is a connected sum of knot
projections, each of which is an element of T1 = { g,∞, P1}. Therefore, P can
be related to a simple closed curve gby a finite sequence consisting of RI and
strong RIII.

Conversely, if P can be related to a simple closed curve gby a finite sequence
consisting of RI and strong RIII, then H(P ) = λ(P ) = 0.

Then, we have

H(P ) = λ(P ) = 0 ⇔ P can be related to gby using RI and strong RIII.

This completes the proof of the first formula of Theorem 1.3.
Next, we show the fourth formula before considering the second and third

formulae. Assume that X̃(P ) = 0. In this case, we have a chord diagram with
no chord intersections. A knot projection P having such a chord diagram can be
related to a simple closed curve gby a finite sequence consisting of RI. Conversely,
if a knot projection P can be related to gby a finite sequence consisting of RI,
we have ⊗(P ) = 0, which implies X̃(P ) = 0. Then, we have the fourth formula

X̃(P ) = 0 ⇔ P can be related to gby using RI.

Now, we consider the third formula. Since X̃(P ) is invariant under RI and weak
RIII,

P can be related to gby using RI and weak RIII ⇒ X̃(P ) = X̃( g) = 0.

Then

X̃(P ) = 0 ⇔ P can be related to gby using RI and weak RIII

where we used the fourth formula to show (⇒).
Finally, we show the second formula. We assume that f(P ) = λ(P ) = 0. This

condition implies 0 = 4λ(P ) = 3 f(P ) + ⊗(P ) and, originally, we have f(P ) ≥ 0
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and ⊗(P ) ≥ 0. Then ⊗(P ) = f(P ) = 0. We notice that ⊗(P ) = 0 if and only if
X̃(P ) = 0, which implies f(P ) = 0. Then,f(P ) = λ(P ) = 0 ⇔ ⊗(P ) = f(P ) = λ(P ) = 0 ⇔ ⊗(P ) = 0 ⇔ X̃(P ) = 0.

Using the proof of the third formula in the above,f(P ) = λ(P ) = 0 ⇔ P can be related to gby using RI.

That completes the proof. �

The third and fourth formulae in Theorem 1.3 imply [1, Corollary 4.1].

Corollary 4.1 ([1]). A knot projection P can be related to gby a finite sequence
consisting of RI and weak RIII if and only if P can be related to gby a finite
sequence consisting of RI.

Remark. The above proof of the first formula in Theorem 1.3 implies Fact 2 from
[3].

Fact 2 (Ito-Takimura-Taniyama [3]). The following (1) and (2) are mutually
equivalent.

(1) A knot projection P is any connected sum of knot projections, each of
which is an element of T1.

(2) A knot projection P and a simple closed curve gon the sphere can be
related by a finite sequence consisting of RI and strong RIII.

As in the proof of Theorem 1.3, we have

Proposition 4.2. Let P and P ′ be arbitrary knot projections and P]P ′ the con-
nected sum of P and P ′. Let x(P ) be the number of sub-chord diagrams of type
x embedded into CDP for a knot projection P , where x = ⊗, f, or f.

x(P]P ′) = x(P ) + x(P ′).

As a corollary,
λ(P]P ′) = λ(P ) + λ(P ′).

Proof. By the definitions of a chord diagram of a knot projection and x, we
immediately have x(P]P ′) = x(P ) + x(P ′), since chords from CDP and those of
CDP ′ do not intersect. Then,

λ(P]P ′) =
3
4

f(P]P ′) − 3
4

f(P]P ′) +
1
4
⊗ (P]P ′)

=
3
4

f(P ) +
3
4

f(P ′) − 3
4

f(P ) − 3
4

f(P ′) +
1
4
⊗ (P ) +

1
4
⊗ (P ′)

= λ(P ) + λ(P ′).
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�

Proposition 4.3. For any integer k, there exists a knot projection P such that
λ(P ) = k.

Proof. In this proof, we use the symbol as nm to represent a knot projection
defined by Figs. 22 and 23. Note that

λ(41) = 4, λ(51) = −5, and λ(73) = −3.

Using the above additivity, λ(41]51) = −1 and λ(41]73) = 1. If k is a positive
integer, a connected sum P of k pairs, each of which consists of 41 and 73 satisfies
λ(P ) = k. If k is a negative integer, a connected sum P ′ of k pairs, each of which
consists of 41 and 51 satisfies λ(P ′) = k. Noting that λ(31) = 0, the proof is
completed. �

5. Proof of Theorem 1.4.

Proof. We consider all possibilities of connections of tangles shown in Fig. 5
having four end points. Then, we have exactly six cases (Fig. 21). It is easy
to see that we can omit Cases 2, 4, and 6. Moreover, by retaking the shaded
part, Case 3 becomes Case 5, and thus, we can omit Case 3. Therefore, in the
following, we only consider Cases 1 and 5. Throughout this proof, the phrase
shaded parts refers to the shaded parts in Cases 1 and 5 in Fig. 21. According to
the definition of flypes, there is no chord connecting an endpoint on the shaded
part with another endpoint on the non-shaded part (?). This condition is called
condition (?). Please refer to the following on the basis of Cases 1 and 5 in
Fig. 21. Further, note that we can omit the case wherein Q is not contained by
the sub-chord that is being counted, since such a sub-chord should be counted in
both before and after applying a flype (♦).

• ⊗.
– Assume that no chord of ⊗ is in the shaded part (zero-chord case).

Chord Q is in the shaded part, and therefore, we can omit the case
(cf. (♦)).

– Assume that exactly one chord of ⊗ is in the shaded part (one-chord
case). Fig. 21 (Cases 1 and 5) illustrates the claim.

– Assume that two chords of ⊗ are in the shaded part (two-chord case).
It is easy to verify the claim in Case 1. Further, note that Case 5 is
a case that is not related to Q (cf. (♦)).

• f. We present a discussion similar to that of ⊗ case. In the rest of this
proof, in the case that y chords of the sub-chord we have chosen (now we
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Figure 21. Cases 1–6.

choose f) are included in the shaded part in the whole chord diagram,
we call the case a “y-chord case.”

– Zero-chord case. The fwe focus on is not contained in the shaded
part and the case is not related to Q. Therefore, we can omit the
case.

– One-chord case. Fig. 21 (Cases 1 and 5) illustrates the claim.
– Two-chord case. Case 5 has no possibility to realize f containing

Q. Fig. 21 (Case 1) illustrates the claim.
– Three-chord case. Case 5 has no possibility to realize f containing

Q. Case 1 fixes the type of the two other chords crossing Q and we
therefore show the claim easily.
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We know that we need not mention the zero-chord case since the case has
no possibility to realize the focused sub-chord containing Q. Therefore,
we omit the zero-chord case in the following.

• f. f is composed of two parallel chords and the chord crossing the two
parallel chords, called the sticking chord.

– One-chord case. Fig. 21 (Cases 1 and 5) illustrates the claim. In
each case, chord Q can either be the sticking chord or a non-sticking
chord.

– Two-chord case. Condition (?) and the case begin considered require
that there be no possibility realizing fcontaining Q in Case 1; then,
we do not need to consider the case. In Case 5, Q cannot be the
sticking chord; it is easy to verify the claim.

– Three-chord case. Case 5 has no possibility to realize f containing
Q. Case 1 fixes f containing Q, which becomes the sticking chord,
and therefore, we easily obtain the claim.

• f.
– One-chord case. Through Fig. 21 (Cases 1 and 5), it is easy to verify

the claim.
– Two-chords case. We notice that the shaded part must contain two

adjacent chords of fby the condition (?). Accordingly, there is no
possibility to realize f containing Q in Case 1. Similarly, we have
the claim in this case using Fig. 21 (Case 5).

– Three-chord case. Case 1 has no possibility to realize f containing
Q. Case 5 has three parallel chords containing Q in the shaded part
and it is easy to verify the claim.

– Four-chord case. Case 5 has no possibility to realize f containing
Q. In Case 1, Q must cross three parallel chords that fix f, and
thus, we have the claim.

• f.
– One-chord case. Fig. 21 (Cases 1 and 5) illustrates the claim.
– Two-chord case. In this case, two parallel strands of f must be

in the shaded part. Then, Case 1 has no possibility to realize f
containing Q. In Case 5, the claim is easily shown.

– Three-chord case and Four-chord case. Condition (?) requires that
there be no possibility to realize fcontaining Q in Cases 1 and 5.

�
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Remark. In Fig. 24, there are three pairs (7A, 76), (7B, 77), and (7C , 75) with
respect to flypes. In each pair, one can be related to another by one flype.

6. Relationship of the number of sub-chord diagrams and Arnold

invariants.

This section contains comments regarding the relationship between our study
and Arnold invariants. Theorem 1.1 counts the number of sub-chord diagrams in
CDP of a knot projection P . In comparison, for the Arnold invariants J+, J−,
and St, Averaged invariant −(J+ + 2St)/2 counts the sum of signs ±1, where
each sign is assigned to a sub-chord ⊗ (further details can be found in [4]; note
also that Polyak’s original Averaged invariant is (J+ + 2St)/8). Let P be an
arbitrary knot projection (the image of an immersion) on S2. Putting ∞ on this
arbitrarily selected region r(∞) from S2\P , P can be regard as a plane immersed
curve and is denoted by Pr(∞). Arnold invariants, J+, J−, and St, are defined
for plane immersed curves. Proceeding further, J+(Pr(∞) + 2St(Pr(∞))) does
not depend on the selection of r(∞) (see [4, Sec. 2.4]). Thus, we have an integer
J+(P ) + 2St(P ) for an arbitrary spherical curve P . Then, Averaged invariant
a(P ) is defined by

a(P ) = −(J+(P ) + 2St(P ))/2.

Recall that any two knot projections P1 and P2 are related by a finite sequence
of three types of Reidemeister moves, as shown in Fig. 1. The definition of a(P )
implies (1)–(5).

Remark. Let m be the total number of weak second and third Reidemeister moves
in a finite sequence consisting of first, second, and third Reidemeister moves
between two knot projections P1 and P2.

(1) a(P1) − a(P2) ≡ m (mod 2) ,
(2) a(P ) is invariant under RI,
(3) a(P ) is invariant under strong RII
(4) a single RIII changes a(P ) by ±1,
(5) a single weak RII changes a(P ) by ±1.

Proof. The definitions of J+ and St immediately imply (3), (4), and (5). Thus,
if we have (2), then we have (1). Here, we recall Polyak’s formula for a(P ), which
directly implies (2).

Let X∗ be a ⊗ with a base point on S1 of ⊗ apart from any endpoints of the two
chords. Similarly, a chord diagram with a base point is denoted by CD∗

P which
is defined as a chord diagram CDP with a point on S1 except for any endpoints
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of chords. Note that the orientation of P having the base point, which is on the
curve except for double points, corresponds to the orientation of CD∗

P when we
always orient S1 of CDP counterclockwise. Along the lines of [4, Sec. 6.4], we
recall Polyak’s formulation of a(P ) as follows.

Let us obtain any orientation of S2 and any orientation of a knot projection
P . We start from the base point and move along the orientation P . Each time
we pass through a double point for the first time, we attach a sign (= −1, 1).
For each double point ��@I through which branch t passes, we assign a pair (t1, t2)
that indicates the orientation rotating from t1 to t2. If the orientation (t1, t2)
is (resp., is not) equal to the orientation S2, the sign of the double point is
−1 (resp., 1). For instance, choosing appropriate orientations of the sphere, we
describe the sign simply as follows. For each double point ��@I having branches t1
and t2, where t1 (resp., t2) is the branch we pass through when we pass through
the double point for the first (resp., second) time, if t1 is the arrow from the
bottom left to the top right, the double point has sign = −1 and if not, the sign
is 1. Assign each sign of a double point to each corresponding chord. Then sub-
chord X∗ embedded into CD∗

P has two signs ε0(X∗) and ε1(X∗) for each X∗. As
in [4, Page 997, Formula (3)], we can show∑

X∗ embedded in CD∗
P

ε0(X∗)ε1(X∗) = a(P ).

By the above formula, the first Reidemeister move does not affect a(P ). That
completes the proof. �

Remark. We present a table of the values of Averaged invariants a(P ) = −(J+(P )+
2St(P ))/2 for prime reduced knot projections with up to seven double points,
which appear in Figs. 22 and 23.g 31 41 51 52 61 62 63 71 72 73 74 75 76 77 7A 7B 7C

0 −1 0 −2 −1 0 −1 −2 −3 −1 −2 −1 −2 −1 0 −1 0 −2
[2] introduced another integer-valued additive invariant and a complete invariant
for prime reduced knot projections with up to seven double points except for one
pair under an equivalence relation determined by RI and strong RII.

7. Tables of knot projections with invariants.

Finally, we present two tables. The first consists of Figs. 22 and 23. The table
contains prime reduced knot projections with up to seven double points and their
chord diagrams, each of which has the number of cross chords, triple chords, H-
chords, f-type sub-chord diagrams, or III-chords embedded in the chord diagram
of the knot projection. Fig. 24 shows prime reduced knot projections with integers
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that are the values of λ. Note that prime knot projections lacking only the knot
projection ∞ are prime reduced knot projections. Here, a prime knot projection
is defined as a knot projection that cannot be represented as the connected sum
of two non-trivial knot projections. The second table consists of prime reduced
knot projections with up to seven double points with λ. For two knot projections
P1 and P2, we connect P1 and P2 with a line in the table, if P1 can be related to
P2 using RI and strong RIII under the following rule: except for a pair (7B , 74),
every line indicates the existence of a sequence of a finite number of RIs and a
strong RIII (Fig. 24).
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