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Abstract 
 
The paper presents a complete information model of bidding in second price sealed bid 
and ascending price (English) auctions, in which potential buyers know the unit valuation 
of other bidders and may spitefully prefer that their rivals earn a lower surplus. Bidders 
with spiteful preferences should overbid in equilibrium when they know their rival has a 
higher value than their own, and bidders with a higher value underbid to “counter” spite 
the overbidding of the lower value bidders. The model also predicts different bidding 
behavior in second price as compared to ascending price auctions. The paper also 
presents experimental evidence broadly consistent with the model. In the complete 
information environment, lower value bidders overbid more than higher value bidders, 
and they overbid more frequently in the second price auction than in the ascending price 
auction. Overall, the lower value bidder submits bids that exceed value about half the 
time. These patterns are not found in the incomplete information environment, consistent 
with the model. 
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1. Introduction 

One of the most basic and apparently innocuous assumptions about behavior in games is 

that players will adopt dominant strategies. If this assumption has only limited predictive power, 

however, it calls into question the empirical relevance of many important concepts in mechanism 

design, such as strategy-proofness. Recent laboratory research in public good mechanism design 

has documented extensive failure by subjects to follow dominant strategies even in fairly simple 

environments (Attiyeh et al., 2000; Kawagoe and Mori, 2001; Cason et al., 2006). Experiments 

have also shown that subjects do not bid optimally in incentive-compatible second-price 

(Vickrey) auctions. For example, Kagel and Levin (1993) find that 58 to 67 percent of bids 

exceed value, and Harstad (2000) reports that severe overbidding does not decline over time.  

Overbidding is much less pronounced in the (isomorphic) English, ascending price auction. 

The equilibrium bidding strategy is more transparent in the ascending-price auction, which has 

led some researchers to conclude that the subtlety of the dominant strategy in the sealed bid 

second-price auction is a primary reason bidders fail to follow it. Learning is also difficult in the 

second-price auction because the use of a weakly dominated strategy may often not cause any 

loss in actual payoff (Kagel and Levin, 1993). Moreover, even with standard (own-payoff 

maximizing) preferences, many Nash equilibria exist in these auction formats other than the 

dominant strategy equilibrium. But what if the dominant strategy equilibrium does not exist 

because preferences are misspecified? 

The paper explores an alternative explanation for overbidding in second-price and 

ascending-bid auctions: spiteful preferences. A spiteful agent has utility that increases when the 

earnings of her rivals decrease. With such preferences, a spiteful agent may be willing to 

sacrifice her monetary payoff in order to reduce the other agent’s monetary payoff. The 

following section contains our formal definition, which features a reciprocal motive; i.e., subjects 

feel more spiteful towards others who treat them spitefully. The key design feature of second-

price and ascending-price auctions that make them incentive-compatible under standard (own-

payoff maximizing) preferences makes them particularly prone to manipulation by bidders who 

have spiteful preferences. Because an individual’s monetary payoff conditional on winning the 

auction is independent of her bid, if she cares only about her monetary payoff has no incentive to 

manipulate her bid to lower her price. But if she fails to win her bid may determine the payoff of 

the winner. Therefore, if she is spiteful she can increase her bid to increase her (spiteful) utility. 
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Agents who have spiteful preferences would not consider a bid equal to value to be a dominant 

strategy.  

We construct a two-bidder, intention-based sequential decision model which shares its sprit 

with Dufwenberg and Kirchsteiger (2004). Intention is measured by the distance between two 

monetary payoffs, one generated by a chosen bid and the other by a value-revealing bid. An 

auction is a market that has clear winners and losers. A bidder with lower value may behave 

spitefully when she infers her opponent’s intention to win a positive winning surplus. This can be 

interpreted as part of the disutility of losing the auction, since she is in a disadvantageous 

position. This prompts her to place a spiteful bid higher than her value, hoping to give her 

opponent a negative psychological payoff in addition to reducing his winning surplus. A novelty 

of our analysis is in incorporating retaliation by a bidder with higher value. A spiteful bid by the 

lower value bidder can backfire by inducing the higher value bidder to place a deliberately low 

bid in order to penalize the spiteful conduct by the lower value bidder, even though such a 

retaliatory bid reduces his chance of winning.  

In particular, we consider a complete information environment that strengthens the impact 

of social preferences such as spite and reciprocity. In the standard incomplete information 

environment typically employed in the auction literature, adding spiteful preferences as we have 

modeled them still results in bids equal to value in the unique symmetric equilibrium. By 

contrast, bidders with spiteful preferences should overbid in equilibrium when they have 

complete information about their rival’s value and they know their rival has a higher value than 

their own. Bidders with the higher value underbid to “counter” spite the overbidding by the 

lower value bidders. Spiteful preferences also make the two auction forms non-isomorphic. In an 

ascending-price auction, an auctioneer or clock raises a calling price until there remains only one 

active bidder. A climbing calling price gradually reduces the winner’s payoff. Taking this effect 

into account, in our sequential decision model the bidders revise their estimates upward about the 

other’s spitefulness when they arrive at each new, higher calling price. This makes the bidder 

with the higher value willing to retaliate at earlier stage. Consequently, for the same level of 

spiteful preferences, lower value bidders should overbid less in the ascending-price auction than 

in the second-price auction in this environment. Thus, the set of equilibria in ascending-price 

auctions is smaller than in second-price auctions. 

We also present experimental evidence broadly consistent with the predictions of this 

model. In the complete information environment, lower value bidders overbid more than higher 
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value bidders, and they overbid more frequently in the second price auction than in the ascending 

price auction. Overall, the lower value bidder submits bids that exceed value about one-half the 

time. These patterns are not found in the data we collected for the incomplete information 

environment, consistent with the model. 

Researchers have recently measured and explored the impact of social preferences that 

include reciprocity and spite in a variety of environments, but often in non-competitive contexts 

such as public good provision, two-agent bargaining and simple games.1 A small amount of 

research has studied the impact of spite in auctions, starting with Morgan et al.’s (2003) 

theoretical analysis (which we became aware of after starting the research reported here). Their 

model, which we discuss later in more detail, features non-reciprocal spite and does not predict 

differences between the second price and ascending price auctions for the two-bidder setting we 

employ. Cooper and Fang’s (2007) experimental study also considers (like us) a two-bidder 

environment for simplicity, but only second price auctions. They provide bidders with noisy 

information about their rival’s value, with varying degrees of accuracy, and find that overbidding 

is consistent both with spite and “joy-of-winning” motivations. Andreoni et al. (2007) also report 

a laboratory experiment in which bidders may have information about rivals’ value draws. They 

consider first and second price auctions, all with four competing bidders, and test predictions 

regarding equilibrium strategies in three different information structures. Their results provide 

strong support for theory, but they also observe overbidding by lower value bidders in their 

second price auctions that is consistent with a spite motive. 

Our results are also consistent with spiteful bidder preferences, and we observe 

overbidding and underbidding in a pattern consistent with our model of reciprocal spite. Lower 

value bidders overbid relative to their values, but in response the higher value bidders underbid 

to punish this overbidding (or at least make overbidding risky). Spite leads to counter-spite, and 

in equilibrium these spiteful social preferences substantially reduce the size of the set of Nash 

equilibria. Moreover, this combination of spite and counter-spite is the reason that isomorphism 

fails for the second price and ascending price auction, and the particular pattern of larger and 

more frequent overbids in the second price auction predicted by the model is also observed in the 

experimental data. 
                                                 
1  Many preference models now exist that extend the utility domain beyond own monetary payoff to include 
psychological payoffs, often to explain unconventional other-regarding behavior in non-market contexts. Those 
include Rabin (1993) based on a psychological game proposed by Geanakoplos, Pearce, and Stacchetti (1989), 
Levine (1998), Fehr and Schmidt (1999), and Falk and Fischbacher (2006). 
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2. Theory 

Although our assumption of complete information about rivals’ values in the following two 

subsections is admittedly extreme, it is consistent in spirit with the increased information about 

rivals studied in the recent contributions of Andreoni et al. (2007) and Cooper and Fang (2007) 

that also consider implications of spite in auctions. In practice, bidders in many situations would 

have some, perhaps noisy, information about rivals’ trading interests. Our complete information 

model provides a useful benchmark for the case of fully-informed bidders, which presents the 

starkest contrast to the more standard incomplete information context, considered below in 

Section 2.3. In this section, we present the details of our models and characterize equilibrium 

bidding behavior. All proofs are collected in Appendix A. 

 
2.1 The Model with Known Values (Complete Information) 

 There is one seller having one unit of good to sell, whose benefit from retaining it is zero. 

We consider two risk neutral buyers participating in an ascending-bid auction. Each buyer 

}2,1{∈i  has unit demand and values that unit privately. The value measurement is in terms of 

transaction unit 0>ε , corresponding for example to a minimum currency unit. Thus, each 

individual value is denoted by Vi ∈v , where }vv ,,,2,,0{ εεε −= "V , εu=v  and }1{\Nu ∈ , 

where N is a set of natural numbers. We assume that each buyer knows each other’s value and 

that 21 vv > without loss of generality.  

In an ascending-bid auction, an auctioneer (or auction clock) cries out a calling price. Once 

the auction starts, the calling price gradually rises by unitε . All buyers are assumed to be active 

at the start, and the auction terminates as soon as only one active buyer remains. When both 

buyers withdraw simultaneously, the winner is chosen randomly with equal probabilities, and the 

winner has to pay her own withdrawal bid. Let },,,2,,0{ bbB εεε −= "  be a set of withdrawal 

bids commonly available to the two buyers 21 BBB == , where v>= λεb  and }1{\N∈λ . Let  

Br ∈  denote the calling price, and 0=r  corresponds to the initial stage before the auction starts. 

Clearly the decision problem each buyer faces at the start of the auction, when 0=r , exactly 

corresponds to the second price sealed-bid auction. At every calling price level r including 0, 

buyers make simultaneous decisions as to whether to drop out immediately from the bidding, or 

stay in and make a future withdrawal plan. As the calling price rises byε , buyers move to a new 
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decision point with ε+r , where they are no longer allowed to make or plan a withdrawal bid in 

the range {0, , , }r rε−" . Let us denote the withdrawal bid made in a given decision point with a 

calling price at r as },,,{ brrBb r
i

r
i "ε+=∈ , }2,1{∈i .  

 At each decision point, buyer i estimates j’s withdrawal bid r
j

r
j Bb ∈ , and uses it as her 

expected payment assessment at r. The final decision point where one of the bidders actually 

withdraws can be identified as r  satisfying rbb rr =},min{ 21 . We refer to those decision nodes 

leading to the final decision node as interim decision points. A bidding strategy is a sequence of 

actions }1,0{∈ka , },,,,,0{ brk ""ε∈ , where 1=ka  represents an action to stay active in the 

auction and 0=ka  is an action to drop out of the auction. A bidder i’s strategy made at r to 

withdraw at r
ib  is a sequence of  1=ka , for all r

ibk ≤ , and 0=ka  for all r
ibk > . The set of 

feasible strategies 1+ℜ⊂ b
iS  for buyer i consists of only sequences of the form 

}00,0,1,,1,1{ ""  such that 1=ka  for all nk ≤  and 0=ka  for all nk > , for all 

},,,,{ brn ""ε∈ . All strategies lead buyers to stay in the auction until the calling price hits n 

and withdraw there once for all, because the rule of the ascending-bid auction does not allow a 

buyer to reenter the auction once she withdraws. Consequently 21 SS = . Let a function  

i
r
ii SBs →:  , }2,1{∈i , ji ≠ , denote a bidding strategy and )( r

ii bs  represents bidder i’s 

strategy to withdraw at r
ib .  

 Departing from the conventional view of economic agents, we consider buyers who receive 

some psychological payoff in addition to a monetary payoff. The psychological payoff includes 

utility both from spite bidding and from retaliating against spiteful bids. Each buyer estimates 

her opponent’s spiteful intention by her opponent’s choice of withdrawal bid. To analyze such 

intention-based decision making, we will construct a sequential decision model in a spirit of 

Dufwenberg and Kirchsteiger (2004), utilizing two layers of beliefs, with modifications to apply 

the context of the ascending-bid auction. 2 For }2,1{, ∈ji , ji ≠ , and in a given decision point r, 

let r
j

r
ij Bb ∈  denote buyer i’s ex ante assessment as to when buyer j would withdraw from 

                                                 
2 Our study shares the spirit with other types of model with reciprocity, such as those proposed by Rabin (1993) and 
Falk and Fischbacher (2006). 
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bidding, and let and r
i

r
iji Bb ∈  denote buyer i’s assessment of when buyer j expects buyer i to 

withdraw. Let j
r
ijij Sbs ∈)(  and i

r
ijiiji Sbs ∈)( denote a corresponding belief assessment of 

strategy of j and i, where the former is labeled as buyer i’s first order belief and the latter as i’s 

second order belief at r. Those beliefs are maintained unless they become inconsistent with rising 

r, that is, when either rbr
ij <−ε or rbr

iji <−ε  occurs.  

 Under the set of first and second order beliefs, buyer i estimates her payoff, which consists 

of her monetary payoff and psychological payoff. Her payoff is defined on her own strategy 

choice and a set of beliefs ))(),(),(( r
ijiiji

r
ijij

r
ii bsbsbs . These variables ultimately depend on 

),,( r
iji

r
ij

r
i bbb , however, and in what follows, we will define buyers’ monetary and psychological 

payoff in reduced form to make its expression simple. We also use the term “beliefs” to refer to 

))(),(( r
ijiiji

r
ijij bsbs  and ),( r

iji
r
ij bb  interchangeably when there is no fear of confusion. Buyer i’s 

monetary payoff at a given decision point r is given by a function ℜ→× r
j

r
ii BB:π , 

jiji ≠∈ },2,1{, , such that  

    ( ) r
ij

r
i

r
ij

r
i

r
ij

r
i bb

r
ijibbbb

r
iji

r
ij

r
ii IbIIbbb

=<>
−+⋅+−= )(210)(),( vvπ ,  

where AI  is an index function which assumes value 1 when the statement A holds, and zero 

otherwise. The first term is her expected winning monetary payoff, the second term is her losing 

monetary payoff of zero, and the third term is her expected payoff from a tie. 

 Buyers’ psychological payoff has a multiplicative form to capture intention-based 

reciprocal interaction between buyers. To better understand this specific form, consider the case 

of buyer 2 at an interim decision point r when she chooses a withdrawal bid rr Bb 22 ∈ , under the 

first order and second order beliefs of rr Bb 121 ∈  and rr Bb 2212 ∈ . The ascending-bid auction rules 

imply that buyer 2’s withdrawal bid choice rr Bb 22 ∈  determines buyer 1’s monetary payoff. 

Buyer 2’s anticipation of buyer 1’s payoff at an interim decision point r is 

21 2
1 21 2 1 2( , ) ( ) r r

r r r
b b

b b b Iπ
>

= −v  
21 2

0 r rb b
I

<
+ ⋅ ( ) rr bb

r Ib
221

)(21 21 =
−+ v . Recall that buyer 2 knows that her 

value is less than the value of buyer 1; consequently, she expects to lose. Buyer 2 can also expect 

that buyer 1 feels entitled the full winning payoff of 21 vv − , based on the conventional 

dominant strategy equilibrium where both buyers are not spiteful and bid equal to their own 
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values. Since buyer 1’s entitled winning payoff is 21 vv −  at every decision point, a reasonable 

reference payoff for buyer 1 from buyer 2’s point of view is 

rrrr bbbb
rr IIbb

221221
0)(),(ˆ 212211 <>
⋅+−= vvπ  ( ) rr bbI

221
)(21 21 =

−+ vv .  

 If buyer 2 is spiteful, she would plan to withdraw at rb2  higher than 2v  but less than 1v  so as 

to let buyer 1 win with a positive but smaller winning payoff rb21 −v . The distance between the 

buyer 1’s actual payoff, ),( 2211
rr bbπ  and her reference payoff ),(ˆ 2211

rr bbπ  reflects the intensity of 

buyer 2’s desire to harm buyer 1. In particular, we use this distance, relative to what payoff range 

buyer 1 would expect to be relevant for her psychological assessment. The spiteful withdrawal 

bid of buyer 2 that buyer 1 should pay particular attention to lies in the range ]},,[max{ 12 vvr . 

Assuming buyer 2 is being spiteful, at each interim decision point the maximum winning payoff 

available for buyer 1 is },max{ 211 vv rπ r −= , and the minimum is 0111 =−= vvrπ . When 

buyer 2 wins, buyer 1 receives the losing payoff of zero. Thus, we measure the intensity of buyer 

2’s spite intention toward buyer 1 at r by a function ℜ→× rrr BBf 122 :  defined for 1v≤r  as the 

following ratio:  

εππ

ππ

+−

−
=

rr

rrrr
rrr bbbb

bbf
11

22112211
2122

),(ˆ),(
),(   

 
( )

ε+−

−+⋅+−
= =<>

},max{

)(210)(

21

2222
221221221

vv

vv

r

IbIIb rrrrrr bb
r

bbbb
r

.          (2.1) 

A negative value of rf2  means buyer 2 being spiteful toward buyer 1. Note, in particular, when 

the calling price r climbs beyond 2v , the denominator of rf2  is revised as a new narrower payoff 

range rrπ 11 π− . This increases rf2  in absolute value. When ε+≥ 1vr , we set 0),( 2122 =rrr bbf , 

because it is hard to interpret buyer 2 bidding beyond 1v  as a product of spite intention toward 

buyer 1.3 

In a similar but slightly different manner, buyer 2 assesses buyer 1’s intention, which is 

measured by a function ℜ→× rrr BBf 2121 :ˆ , such that  

                                                 
3 Theε  is added to the relevant spite payoff range 1 1

rrπ π−  in the denominator of (2.1) to prevent it from vanishing 

when 1v=r . 



 8

),(),(),(ˆ
212212121221212122121
rrrrrrrrr bbbbfbbf δ+= .                  (2.2) 

The first component is an index analogous to rf2  in (2.1). At each decision point r, buyer 2 

expects buyer 1 to withdraw at rb21 , and she anticipates that buyer 1 expects buyer 2 to withdraw 

at rb212 . The reference payoff of buyer 2 should be zero, 0ˆ2 =π , either when she wins or when 

she loses, based on the value-revealing reference bidding strategy. Expecting that buyer 1’s 

counter spiteful withdrawal bid rb21  could range from }],[max{ 2vr  to 1v , the relevant winning 

payoff ranges from 122 vv −=rπ  to },max{ 222 vv rr −=π . As before, we measure buyer 1’s 

intensity of spitefulness, from buyer 2’s perspective, by a ratio of the distance between buyer 2’s 

payoff ),( 2122
rr bbπ  against the relevant payoff range, which is captured by a function 

ℜ→× rrr BBf 2121 :  as 

εππ
π

+−

−
= rr

rr
rrr bb

bbf
22

212122
2122121

0),(
),(  

                 
ε+−

−+−+⋅
= =<>

},max{

))(2/1()(0

21

212212
212212122121221

vv

vv

r

IbIbI rrrrrr bb
r

bb
r

bb .             (2.3) 

The index rf21  does not affect utility when buyer 2 loses and obtains her zero reference payoff. 

As in the case of rf2 in (2.1), it is not reasonable to interpret any counter spite intention behind 

any bid exceeding 1v , in which case we set rf21 =0. 

 If buyer 1’s intentions matter to buyer 2, buyer 2 should feel differently about the same 

losing monetary payoff depending upon buyer 1’s choice of withdrawal bid, since it reflects 

buyer 1’s retaliatory intentions as well as her attempt to secure a winning payoff of at least 

211 b−v . This is reflected in the second component of her psychological payoff, which is a 

function ℜ→× rrr BB 2121 :δ , defined by 

=),( 2122121
rrr bbδ

( )
rr

bb
r

bb
r

bb rrrrrr IbIbI

11

211211
212212122121221

}]0,max{[21}]0,max{[0

ππ −

⋅−−+⋅−−+⋅
=><

vv
  

=
( )
ε+−

⋅−−+⋅−−+⋅ =><

},max{

}]0,max{[21}]0,max{[0

21

211211
212212122121221

vv

vv

r

IbIbI rrrrrr bb
r

bb
r

bb .  (2.4) 
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Notice that in this framework, buyer 2 may collect a non-zero psychological payoff even when 

she loses, if she anticipates some counter-spite intent from buyer 1, i.e. 0),( 2122121 <rrr bbδ . Again, 

we set 0),( 2122121 =rrr bbδ  for r beyond 1v . 

       Buyer 2’s utility at decision point r combines her monetary and psychological payoff, which 

is represented by a function ℜ→×× rrrr BBBU 2122 : , given by  

),(),,( 21222122122
rrrrrr bbbbbU π= ),(),(ˆ

212221221212
rrrrrr bbfbbf ⋅⋅+ γ ,                 (2.5) 

where 2γ  is a non-negative real number. The multiplicative form of the psychological payoff in 

the utility function (2.5) captures the reciprocal nature of spite. This is a common feature among 

the other existing reciprocal preference models cited above, each of which has its specific way of 

measuring the degree of intentions. Our utility model also follows the basic reciprocal preference 

model with the degree of intentions rf2  and rf21
ˆ  constructed to be plausible and consistent with 

this auction context. Buyer 2 becomes a conventional economic agent maximizing a monetary 

payoff when either 02 =γ  or 0),( 2122 =rrr bbf . 

Next consider the case of buyer 1. Suppose that buyer 1’s first and second order beliefs at 

interim decision node r are rr Bb 212 ∈  and rr Bb 1121 ∈ . Let a function ℜ→×× rrr BBBU 1211 :  

represent buyer 1’s utility updated at the decision point r, defined in exactly the same manner as 

in the case of buyer 2, by 

),(),,( 12111211211
rrrrrr bbbbbU π= ),(),(ˆ

121112112121
rrrrrr bbfbbf ⋅⋅+ γ ,                  (2.6) 

where 1γ  is a non negative real number. The function rf1  measures how spiteful buyer 1 is 

toward buyer 2, which is given by 

rr

rr
rrr bb

bbf
22

1122
1211

0),(
),(

ππ
π

−

−
=  

[ ]
ε+−

−⋅−+⋅−+⋅
= =<>

),max(

0))(2/1()(0

21

1212
121121121

vv

vv

r

IbIbI rrrrrr bb
r

bb
r

bb .           (2.7) 

Its numerator is the distance between zero payoff that buyer 1 thinks buyer 2 should receive and 

the payoff that buyer 1’s bid choice rb1  makes possible for buyer 2, when buyer 1 assumes buyer 

2 will bid rb12 . This distance is measured against the payoff range that buyer 1 makes possible for 

buyer 2, when buyer 1 bids spitefully. Again, we set 0),( 1211 =rrr bbf  when ε+≥ 1vr . 
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The index rf12
ˆ , measuring buyer 1’s belief about how spiteful buyer 2 is toward buyer 1, 

consists of two components of the following form,  

),(),(),(ˆ
121211212121121212112
rrrrrrrrr bbbbfbbf δ+= .                        (2.8) 

The first component is given by 

rr

rrrr
rrr bbbb

bbf
11

121211121211
1211212

),(ˆ),(
),(

ππ
ππ

−

−
=   

ε+−

⋅−+−+⋅
= =<>

),max(

))(2/1()(0

21

122122
121121211212112

vv

vv

r

IbIbI rrrrrr bb
r

bb
r

bb .                            (2.9) 

Its numerator is the distance between buyer 1’s reference payoff and the payoff that buyer 1 

believes buyer 2 makes available for buyer 1 by choosing bid rb12  when in buyer 1’s belief buyer 

2 believes buyer 1 will bid rb121. The second component is given by  

=),( 1211212
rrr bbδ

( )

22

122122
121121211212112

}]0,[min{21}]0,[min{0

ππ −

⋅−+⋅−+⋅
=>< rrrrrr bb

r
bb

r
bb IbIbI vv

  

( )
ε+−

⋅−+⋅−+⋅
= =><

),max(

}]0,[min{21}]0,[min{0

21

122122
121121211212112

vv

vv

r

IbIbI rrrrrr bb
r

bb
r

bb .           (2.10) 

We set both rf12  and r
12δ to zero when ε+≥ 1vr .The second term in the numerator indicates 

how much buyer 2 is willing to risk in making her spiteful bid. As in the case of buyer 2, buyer 1 

is a conventional agent with no psychological payoff when either 01 =γ  or 0),( 1211 =rrr bbf .  

 

2.2 Equilibrium   

In an ascending-bid auction, buyers make decisions multiple times before they arrive at a 

terminal node. In our model, the outset at 0=r  before the calling price starts rising directly 

corresponds to the decision situation in the second-price sealed-bid auction. Hence we interpret a 

bidding strategy )( 0
ii bs , }2,1{∈i  as a sealed bid 0

ib  in the second-price auction. The rules of the 

ascending-bid auction do not allow buyers to reenter into bidding once they withdraw at some 

point, so at each interim decision point r buyers participate in a stage game where they play a 

second-price auction with a minimum selling price of r. It is useful in the later analysis to 

identify the property of each buyer’s withdrawal bid r
ib  that is best response to r

jb  at an interim 



 11

decision point r. For a given pair of beliefs at r, r
j

r
ij Bb ∈  and r

i
r
iji Bb ∈ , jiji ≠∈ },2,1{, , 

let ),( r
iji

r
ij

r
i bbBR  denote a set of buyer i’s best response of withdrawal bids such that  

     { }r
ii

r
iji

r
iji

r
i

r
iji

r
iji

r
i

r
ii

r
iji

r
ij

r
i BbbbbUbbbUBbbbBR ∈′∀′≥∈= ),,,(),,(),( .                  (2.11) 

The beliefs held at r are said to be consistent with the decisions at r when r
j

r
ij bb =  and r

i
r
iji bb = , 

which we call an interim consistency requirement. Let us define an interim equilibrium at each r 

by considering optimal bidding strategies with consistent beliefs held at r when the buyers 

already arrive at the decision point r. 

 
Definition 1 (Interim Equilibrium): A strategy profile 212211 ))(),(( SSbsbs rr ×∈∗∗  is an interim 

equilibrium in an ascending-bid auction, if for each jiji ≠∈ },2,1{, , ),(* r
iji

r
ij

r
i

r
i bbBRb ∈  at a 

given calling price Br∈  with buyers’ interim beliefs satisfying the interim consistency 

requirement, r
j

r
ij bb *= , and r

i
r
iji bb *= . 

 
 Let 21 SSEr

AB ×⊂  denote the set of interim equilibrium strategy profiles, defined by 

{ } },2,1{,,),,(,),()(),(( 2121212211 jiibbbbbbBRbBBbbSSbsbsE r
i

r
iji

r
j

r
ij

r
iji

r
ij

r
i

r
i

rrrrrrr
AB ≠∈==∈×∈×∈= . 

While the interim equilibrium bidding strategy profiles at decision point r are optimal thereafter, 

strategy profiles exist that are optimal at those decision points before r but lead to termination 

then.  Let us denote the set of such bidding strategy profiles that terminate the auction before r 

by { } },min{and ,))(),((),( 21},,{221121 rbbEbsbsssE k
ABrkr <∈= −

∈
ε

ε "∪ . By the rules of the 

ascending-bid auction, if 0/=r
ABE  for some Br∈ , then 0/=′r

ABE  for all Br ∈′  such that rr >′ . 

Let r  denote the highest calling price possible where at least one buyer is active, defined by 

{ }0max /≠∈≡ r
ABEBrr  . 

 Two notions of equilibrium are relevant for our intention-based ascending-bid auction 

model. One is an equilibrium analogous to Nash equilibrium in the conventional model, and the 

other is analogous to subgame perfect equilibrium. We call the former one a weak intention-

based equilibrium and the latter a strong intention-based equilibrium as defined below.   
 
Definition 2 (Weak Intention-based Equilibrium in ascending-bid auctions): A strategy profile  
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212211 ))(),(( SSbsbs ×∈∗∗  is a weak intention-based equilibrium in the ascending-bid auction, if 

for each jiji ≠∈ },2,1{, , r
r
AB EEbsbs ∪∈∗∗ ))(),(( 2211  at every },,,0{ rr "ε∈ , under the 

consistency requirement on buyers’ beliefs, ∗= jij bb0  and ∗= iiji bb0 .  

 
Definition 3 (Strong Intention-based Equilibrium in ascending-bid auctions): A strategy profile 

212211 ))(),(( SSbsbs ×∈∗∗  is a strong intention-based equilibrium in the ascending-bid auction, if 

r
ABEbsbs ∈∗∗ ))(),(( 2211  at every },,,0{ rr "ε∈  for each jiji ≠∈ },2,1{, . 

 

Before characterizing the equilibrium, consider buyers’ utility at some interim decision 

point r. Let us first examine buyer 2’s utility. Given that she arrives at some r, her first and 

second order beliefs must be rbr ≥21 and rbr ≥212 . Suppose that her beliefs satisfy the interim 

consistency requirement rr bb 121 = and rr bb 2212 = . If buyer 2 chooses to withdraw before her 

opponent rr bb 212 < , then her losing utility is given by 

                   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
−

=
εε

γ
},max{

}0,max{
},max{

),,(
21

211

21

22
22122122 vv

v
vv

v
r

b
r
b

bbbU
rr

rrrr                  (2.12) 

when 1v≤r , and 0),,( 2122122 =rrrr bbbU , otherwise. If buyer 2 chooses to stay in the auction 

beyond rb21 , she will collect the winning payoff of  

rrrrr bbbbU 2122122122 ),,( −= v .                        (2.13) 

If buyer 2 places a tie bid, rrr bbb 212212 == , then her utility is  

( ) )(21),,( 2122122122
rrrrr bbbbU −= v ( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
−

+
εε

γ
},max{

}0,max{
},max{

21
21

211

21

22
2 vv

v
vv

v
r

b
r
b rr

   (2.14) 

when 1v≤r  holds, and otherwise 

( ) )(21),,( 2122122122
rrrrr bbbbU −= v .                       (2.15) 

For example, when buyer 2 is already at the decision point },,{ˆ 12 εε −+∈ vv "r , and if her 

anticipated bid of buyer 1 is },,{ˆ
12

ˆ
21

ˆ
1 εε −+∈== vv "bbb rr , it is easy to check that buyer 2’s 

losing utility is increasing in her own bid, and her winning utility is constant. This is buyer 2’s 

spite region. If the parameters are such that her losing utility exceeds her winning utility, her best 
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response among those early withdrawal strategies is to bid ε  below her opponent’s expected 

withdrawal level, ε−= bbr ˆ
2 . 

Next consider the case of buyer 1 facing a decision problem at r. She must decide when 

to drop out, that is, to stay until rb1 , under her first order belief rb12  and her second order belief 

rb121 . Suppose again that these beliefs satisfy the interim consistency requirement, rr bb 122 =  and 

rr bb 1211 = , and logical consistency rr bb 122 , , rbb rr ≥1211 , . If buyer 1 decides to stay in longer than 

her opponent, i.e., rr bb 121 > , she expects to receive winning utility of  

rrrrr bbbbU 1211211211 ),,( −= v .                                         (2.16) 

If buyer 1 plans to withdraw earlier than her opponent, rr bb 121 < , then her losing utility is given 

by 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
−

=
εε

γ
},max{

}0),min{(
},max{

),,(
21

122

21

12
11211211 vv

v
vv

v
r

b
r
b

bbbU
rr

rrrr ,                  (2.17) 

when 1v≤r , and her losing utility is zero otherwise. Placing a tie bid of rr bb 121 =  brings her 

utility equal to one half of (2.16) and one half of (2.17).  

 No essential difference exists between the two buyers’ payoff structure at an interim 

decision point when their beliefs satisfy the interim consistency requirement. For example, 

consider buyer 1 at the decision point },,{ˆ 12 εε −+∈ vv "r . If buyer 1 expects buyer 2 to plan a 

withdrawal bid at },,{ˆ
12

ˆ
12

ˆ
2 εε −+∈== vv "bbb rr , the case of bbr ˆˆ

1 <  is buyer 1’s counter spite 

region where her losing utility increases in her bid.  

 Since both buyers’ losing payoff is increasing in their own bids, their decision should be 

based on a comparison between the maximum losing payoff and the winning payoff. Then, if 

there is a tie bid that equates the losing payoff and winning payoff, it is the threshold bid that 

divides buyers’ decision to stay in or drop out. In order to identify such a threshold bid, let us 

define following two functions BBB →×:1ϕ  and BBB →×:2ϕ , where ℜ⊂= ],0[ bB  

which is a convex closure of discrete B. It is convenient to consider B  first and add the 

restriction of a minimum bid unit later.  
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( )⎪
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−
−−−

>−

=  otherwise. ,
},max{

)0,min(
)(][

 if ,
),(

2
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21
21
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1

ε

γϕ
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x
xx

rx
rx

vv
v

vv

vv
                       (2.18) 

 ( )
( )⎪

⎩

⎪
⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−

−−
−−−

≥≥−

= .otherwise ,
),max(

)0,max(
)()(

,or either  if ,)(

),(
2

21

12
22

112

2

ε

γϕ
vv
v

vv

vvv

r

x
xx

rxx

rx                               (2.19) 

Assume that buyers’ beliefs satisfy the interim consistency requirement. Equation (2.18) 

represents the difference between buyer 1’s winning payoff (2.16) and losing payoff (2.17) when 

xbb rr == 121 . Similarly, equation (2.19) is the difference between payoff (2.13) and (2.14) of 

buyer 2 when xbb rr == 212 . We can thus identify their threshold bids as a solution of 

0),( =rxiϕ , }2,1{∈i . Let us denote this solution by r
iβ  such that 0),( =rr

ii βϕ . In particular, 

denote buyer 1’s threshold value at Br ∈∗  by Hβ , that is, H
r ββ =
∗

1 , when ∗===
∗∗

rxbb rr
121 . 

After identifying Br
i ∈β  (and BH ∈β ) and its behavior for each relevant Br∈ , we 

find an integer r
iβ̂  (and Hβ̂ ) such that ))1ˆ(,ˆ[ εβεββ +∈ r

i
r
i

r
i  (and ))1ˆ(,ˆ[ εβεββ +∈ HHH ) for 

all relevant Br∈  to be consistent with a minimum bid unitε . 

Lemma 1a: There exists a threshold bid Br ∈2β  only when 1v≤r , and 22 v=rβ  for all such 

relevant r.  

Lemma 1b: (i) There exists a unique threshold bid Br ∈1β  only when ],0[ 1v∈r .   

(ii) For all ],0[ 2v∈r , 0
11 ββ =r .  

(iii) For all ],( 2 Hr βv∈ , ),( 121 vv∈rβ  and rr ≥1β .  

(iv) r
1β  is strictly decreasing in r, for all ],( 2 Hr βv∈ . 

(v)  H
r H ββ β ==

1 .  

(vi) For all ],( br Hβ∈ , rr <1β . 

(vii) r
1β  is strictly decreasing in 1γ , for all ],0[ Hr β∈  

Lemma 1c: (i) For all },,,,0{ 22 vv εε −∈ "r , 0
11

ˆˆ ββ =r .  

(ii) For all ,{ 2 ε+∈ vr  }ˆ,,22 εβε H"+v , rr ≥εβ1
ˆ . 
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(iii)  r
1β̂ is non-increasing in r, for all ,{ 2 ε+∈ vr  }ˆ,,22 εβε H"+v . 

(iv) For all },,)1ˆ{( 1v"εβ +∈ Hr , rr <εβ1
ˆ . 

(v) r
1β̂ is non-increasing in 1γ , for all }ˆ,,,0{ εβε Hr "∈  

 
When r≤1v , it is obvious from (2.18) and (2.19) that both buyers always prefer to lose. 

From lemma 1a, we can tell that when  1v≤r , buyer 2 prefers to place a higher bid if 221 v≤rb , 

and prefers to place a maximum losing bid ε−≤ rr bb 212  otherwise. Lemma 1c (iv) implies that 

buyer 1 has no meaningful threshold bid when the calling price falls in the range 

},,)1ˆ{( br H "εβ +∈ , because planning to withdraw at rr <εβ1
ˆ  is not possible when buyer 1 

has already arrived at decision point r. Thus, roughly put, at every interim decision point such 

that }ˆ,,2,{ 22 εβεε Hr "++∈ vv , buyer 1 prefers to lose if her anticipated opponent’s 

withdrawal bid rb12  exceeds the threshold value of r
1β  by making a withdrawal bid equal to 

ε−rb12 , and prefers to win otherwise. But at each decision point with },,)1ˆ{( br H "εβ +∈ , 

buyer 1 always prefers to lose. Proposition 1 below identifies interim equilibrium bid strategy 

profiles for each relevant r, where buyer 1 is always a winner and buyer 2 is a loser by planning 

to withdraw ε  before buyer 1’s expected withdrawal bid level.  
 
Proposition 1: (i) Under the interim consistency requirement, for all Br∈  such that rr ≤ , 

r
AB

rr Ebsbs ∈))(),(( 2211  if and only if ε−= rr bb 12 , where rr Bb 11 ∈  satisfies rbr 12},max{ ≤+ εv  

εβ r
1

ˆ≤ , when εββ rr
11

ˆ= , and εβε ]1ˆ[},max{ 112 +≤≤+ rrbr v , when εββ rr
11

ˆ≠  . (For all 

ε+≥ rr , 0/=r
ABE . ) (ii) The ultimate terminal node r  is given by εβ )1ˆ( −= Hr  if 

HH βεβ =ˆ , and εβHr ˆ= , if HH βεβ ≠ˆ . 

 
 The next lemma is a direct consequence of Lemma 1a,b,c, and Proposition 1, which 

characterizes a relation among sets of interim equilibrium strategy profiles. 
 
Lemma 2: 02

ABABAB
r
AB

r
AB EEEEE ===⊂⊂⊂ − εε "" v . 
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 Recall that an interim equilibrium set r
ABE  contains only those bid strategies with a 

withdrawal bid equal to the current calling price r or higher. Note also from Lemma 2 that r
ABE  

when ε−≤ rr  contains strategy pairs that are never reached at the ultimate terminal node r . 

This means that some beliefs consistent in one interim equilibrium set may not be consistent in 

another interim equilibrium set. Let w
ABE  and s

ABE  denote the set of weak and strong intention-

based equilibrium bidding strategies in an ascending-bid auction, respectively. Proposition 2 

shows that both sets of intention-based equilibrium bidding strategies of an ascending-bid 

auction are determined mainly by the smallest interim equilibrium set r
ABE . 

 
Proposition 2: 

 (i) A strategy profile w
ABEbsbs ∈∗∗ ))(),(( 2211  if and only if r

r
AB EEbsbs ∪∈∗∗ ))(),(( 2211 . 

 (ii) A strategy profile s
ABEbsbs ∈∗∗ ))(),(( 2211  if and only if r

ABEbsbs ∈∗∗ ))(),(( 2211 . 

 
Let SPE  denote a set of equilibrium strategy profiles in a second-price auction. Since 

the initial stage of an ascending-bid auction, 0=r , is exactly the same as the second-price 

auction, 0
ABSP EE = . We therefore have an ordering inclusion relationship among w

ABE , SPE , 

and }{ r
ABE , summarized in Corollary below.   

 
Corollary: (i) )(ˆ)0(ˆ rββ ≥ . (ii) For all },,{ rr "ε∈ , SPr

r
AB

w
AB EEEE ⊆⊆ ∪ .  

Let us point out several key observations about the equilibrium set. First, our model 

contains the conventional model, where the spite motive plays no role, as a special case where 

either 0=iγ  or 0=if  for }2,1{∈i . Let us denote the set of Nash equilibrium strategy profiles in 

the conventional second-price auction by 21 SSE c
SP ×⊂ , and the conventional ascending-bid 

auction by 21 SSE c
AB ×⊂ , for two buyers with 21 vv > . c

SPE  can be described as  

⎪⎭

⎪
⎬
⎫

+≥
≤≤+

≤

⎪⎩

⎪
⎨
⎧

≤
−≥
+≥

×∈×∈=
. if

 if
 if

 
 ,

 and ,),())(),((
11

212
21

12
12
12

2121212211
ε

εε
ε

v
vv

v

v

v

b
b

b

b
bb

b
BBbbSSbsbsE c

SP . 
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c
SPE  contains multiple Nash equilibria that are both efficient and inefficient, and in particular the 

efficient equilibrium set includes the value-revealing dominant strategy equilibrium 

),(),( 2121 vv=′′ bb .  Figure 1 shows an example, when 8001 =v , 7002 =v , and 10=ε . 

Applying our interim equilibrium notion to the conventional model, it is immediate that  

( )
⎪
⎭

⎪
⎬

⎫

+≥
≤≤+

≤

⎪
⎩

⎪
⎨

⎧

≤
−≥
+≥

×∈×∈=
. if

 if
 if

 
 ,

 and ,),())(),((

11

212

21

12

12

12

2121212211
ε

εε
ε

v
vv

v

v

v

r

r

r

r

r

r

rrrrrrrc
AB

b
b

b

b
bb

b
BBbbSSbsbsE  

for all },,,,0{ 22 vv εε −∈ "r , and  

( )
⎭
⎬
⎫

+≥
≤

⎪⎩

⎪
⎨
⎧

≤
−≥×∈×∈=

. if
 if

 
 , and ,),())(),((

11

11

12

12
2121212211 ε

ε
v
v

v r

r

r

rr
rrrrrrrc

AB b
b

b
bbBBbbSSbsbsE  

for all ,{ 2 ε+∈ vr  },,22 b"ε+v . Therefore, for buyers without spite or counter-spite motives, 

the set of Nash equilibrium bidding strategies in the second-price auction coincides with the 

bidding strategy set of our intention-based equilibrium, which is no surprise since there is no 

room for intentions in the conventional model. Consequently, the equilibrium set of the 

ascending-bid auction and second-price auctions for buyers without reciprocal spite motives are 

identical, which corresponds to the well known isomorphism between the two auction 

mechanisms.  

Our second observation is that introducing the reciprocal spite motivation makes SPE  

much smaller than c
SPE . Figure 2 shows an example of withdrawal bid profiles ),( 21 bb  that 

satisfies { }εβεε 0
1221

0 ˆ))(),(( ≤≤+−== bbsbsEE ABSP v  when 8001 =v , 7002 =v , 51 =γ , 

10=ε . In this case, buyer 1’s threshold bid at 0=r  is calculated as 790ˆ 0
1 =εβ , and the set of 

equilibrium bid profiles is illustrated by the dots located within a line segment parallel to the 45 

degree line with lower bound of )700,710( and upper bound of )780,790( . As compared to 

Figure 1, the equilibrium set in Figure 2 does not contain any inefficient withdrawal bid profiles 

as well as those bid profiles located below 45 degree line by distance of ε2  or more. The 

intuition behind this is simple. Consider a strategy profile c
SPEbsbs ∈))~(),~(( 2211  such that 

21
~~ bb < , whose withdrawal bids )~,~( 21 bb  are located in the upper left inefficient equilibrium set 

in Figure 1 where 21
~b<v . In the conventional model without spite and counter-spite motivations, 
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buyer 1 receives a zero monetary payoff by placing any bid less than 2
~b . But with spiteful 

preferences, buyer 1 has an incentive to increase her bid up to ε−2
~b . Buyer 2’s original bid 2

~b , 

however, is no longer a best response to buyer 1’s bid of ε−2
~b . Buyer 2 would instead prefer to 

lose by placing a lower but spiteful bid. In this way, every inefficient Nash equilibrium point in 
c
SPE  is not compatible with our weak intention-based equilibrium notion with reciprocal spite 

motives. A similar intuition applies to explain why SPE  does not contain 

},2),{( 21122121 εε +≥−≤×∈ vbbbBBbb . Thus, the value-revealing withdrawal bids 

),(),( 2121 vv=′′ bb  no longer generate a weak intention-based equilibrium bidding strategy profile, 

unless ε+= 21 vv . However, each set  ( )r
r
AB EE ∪  for all },,,0{ rr "ε∈  keeps a strategy 

profile ))(),(())ˆ(),ˆ(( 22212211 vv ssbsbs ε+=  which generates the same allocation outcome as 

))(),(())(),(( 22112211 vv ssbsbs =′′  as a lower boundary. 

 Our third observation concerns the dynamic nature of an ascending-bid auction specific 

to our intention-based model. The dotted line between ),(),( 2221 ε+= vvbb  and 

)ˆ,)1ˆ((),( 21 εβεβ HHbb −=  in Figure 2 is an example of the withdrawal bids that correspond to 

the set w
ABE , when  8001 =v , 7002 =v , 51 =γ , and 10=ε . In this case, we find 770ˆ =εβ r

H  

which is strictly lower than the upper bound 790ˆ 0
1 =εβ  of 0

ABSP EE = . Thus, w
ABE  is a proper 

subset of SPE . In an ascending-bid auction, once the calling price goes beyond 2v , buyers start 

revising their psychological payoff components of their utilities. Observing the payoff 

possibilities shrink as the calling price rises, both buyers add weight to their own spitefulness. 

Buyer 2 experiences a greater joy from shading her opponent’s winning monetary payoff, which 

at the same time, makes buyer 1 less tolerant and prompts her to resort to an earlier retaliatory 

withdrawal. Knowing this effect on buyer 1, buyer 2 would not push her luck by staying longer 

in the auction. As a result, the upper bound of each interim equilibrium set starts descending.  

These psychological dynamics are different in nature from the issue of Nash equilibrium 

versus subgame perfect Nash equilibrium. In the conventional model, if we consider a set of 

subgame perfect equilibrium strategy profiles for the ascending-bid auction, the equilibrium set 

consists of those strategy profiles that survive at the ultimate withdrawal decision point 1v=r  

for buyer 1. The withdrawal bids for the subgame perfect equilibrium strategy profiles are 
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{ }1112221 ,),( vvv =−≤≤ bbbb ε , which consists of only efficient profiles and are limited to 

those with 11 v=b . The equilibrium set is certainly much smaller than c
SPE  due to the refinement. 

When we consider the strong intention-based equilibrium of Definition 3 for the ascending-bid 

auction with reciprocal spite motives, the withdrawal bid for s
ABE  is given by 

{ }εβεβ HH bbbb ˆ,)1ˆ(),( 1221 =−= . Thus, the set s
ABE  is a singleton and coincides with the 

upper bound of w
ABE . Again, the value-revealing withdrawal bids ),(),( 2121 vv=′′ bb  do of course 

remain dominant in the subgame perfect equilibrium in the conventional model. Thus the 

second-price auction and the ascending-bid auction are equivalent as long as buyers employ the 

dominant strategy, but this strategy is neither dominant nor equilibrium in our intention-based 

model. Yet in s
ABE  the psychological dynamics again restrict buyer 2 from bold over bidding 

beyond εβ )1ˆ(2 −= Hb , and induce buyer 1 to retaliate by withdrawing at εβHb ˆ
2 = , earlier 

than 1v . Therefore, in both cases of weak and strong intention-based equilibrium, the 

psychological dynamics prevent higher range prices from arising in the ascending-bid auction. 

This provides a basis for our main testable hypotheses in Section 4 that the ascending-bid auction 

makes buyer 2 overbid less boldly and consequently generates lower prices on average in the 

ascending-bid than the second-price auction. 

Lastly, none of the preceding three basic observations depends on 0≠iγ , }2,1{∈i . The 

coefficient iγ  reflects the magnitude of the reciprocal spite intention. The only effect of iγ  we 

have observed is that each  r
1β  is strictly decreasing in 1γ  for all r beyond 2v , as stated in 

Lemma 1b. It is quite intuitive that an increase in 1γ  enhances the effect of psychological 

dynamics, in the sense that it makes buyer 2’s overbid more risky in the face of a greater threat 

of counter-spite under-bid by buyer 1. Consequently, the ascending-bid auction lets buyers 

prevent more of their consumer surplus from being acquired by the monopolistic seller. Together 

with the third observation, we may say that the dynamics of the ascending-bid auction format 

makes use of spiteful human nature to allow buyers to achieve better market outcomes than the 

second-price auction. 

 

2.3. Unknown Values (Incomplete Information) 
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This subsection considers the case where each individual buyer does not know her 

opponent’s value but does know its probability distribution. This is the incomplete information 

environment commonly adopted in the auction literature. We remove the restriction of a 

minimum bid unit and carry out the analysis in the continuous environment, which is also 

common. In the preceding two subsections with the complete information environment, we 

adopted the discrete setting because we needed to have the bidding strategy set finite in order to 

ensure the equilibrium to exist both in the conventional model and our intention-based model. 

None of the basic properties we derived there, however, critically depend on the discreteness of 

the environment. Retaining that discrete environment in this subsection would merely complicate 

the analysis and add no essential implications.  

Let }0{],[ ∪+ℜ⊂= vvV  be an interval from which each bidder’s value is drawn. Each 

buyer knows a common prior distribution of private values of buyers including hers. Once she 

knows her own private value she constructs a conditional probability distribution over her 

opponent’s value, which is denoted by a cumulative distribution function ]1,0[: →VG  with 

density function ]1,0[: →Vg .  

Applying minor modification to the utility with reciprocal spite constructed in preceding 

subsections, buyer i’s utility with ji vv >  can be described by 

),(ˆ),(),(),,( ijiijijijiiiijiiijiijii bbfbbfbbbbbU ⋅+= γπ .                          (2.20) 

The first term in (2.20) represents her monetary payoff, which is given by 

( )
ijiijiiji bbjibbbbijiijii IbIIbbb =<> −+⋅+−= )(210)(),( vvπ .                (2.21) 

The second term of (2.20) represents her psychological payoff. The index if  reflects her own 

spitefulness toward buyer j, which takes the form of 
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for ),0[ iv∈r , and 0),( =r
ij

r
ii bbf  for ][ v,vi∈r . The other index ijf̂  reflects buyer i’s expected 

damage by buyer j, having two components ijijij ff δ+=ˆ . The first component is a direct 

consequence of j’s bid (in i’s expectation), given by  
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for )vi,0[∈r , and 0),( =r
ij

r
ijiij bbf  for ][ v,vi∈r . The second component of ijf̂  is consequence 

of j’s intention reflected in j’s bid choice in i’s view, defined for )vi,0[∈r  by 
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And 0),( =r
ij

r
ijiij bbδ  for ][ v,vi∈r . 

 Since we have only two buyers, we omit the subscript indicating a buyer. We consider a 

continuous and continuously differentiable bidding function BVbr →: , with 0)0( =rb  at every 

r. This is a withdrawal bid plan at r. Let Vz∈  denote a buyer’s opponent’s value, which she 

perceives as a random variable following a cumulative probability distribution function 

]1,0[: →VGv  with a density function ]1,0[: →Vg v , obtained from value distribution function 

G conditional on her own value v . Based on the same bid function )(⋅rb , the buyer can estimate 

the distribution of her opponent’s bid. Since the calling price has already climbed up to r, the 

probability distribution of her opponent’s bid must be conditional on that since the possibility of 

her opponent’s bid being less than r has already been eliminated. Since we are interested in a 

symmetric equilibrium bid function, )(⋅rb  must be strictly increasing in its argument. Then, if a 
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buyer makes a withdrawal bid plan corresponding to a value level x, i.e. )(xbr , she wins when 

her opponent’s value falls below x, i.e., xz < , and she loses otherwise. 4  Note that the value x 

must be such that ),0[\)( rBxbr ∈  at r, so that )(1 rbx r
−≥ , otherwise the buyer has already 

retired the bidding before r. Given consistent beliefs, the expected payoff of a buyer when she 

submits a withdrawal plan )(xbr   at a decision point r, is given by;  
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We define that the inside of the parentheses of the second term of (2.26) vanishes when 

the nominator rD  is zero.  

Each buyer maximizes her rEU  by choosing an optimal withdrawal bid plan x at every 

relevant decision point r. Analogous to the interim equilibrium notion of Definition 2 in Section 

2, we can think of a symmetric interim equilibrium generated by )(xbr  that maximizes (2.26) for 

every buyer, equivalently for every V∈v  when v=x , at given r. Then, a symmetric 

equilibrium in the second-price auction can be regarded as a symmetric interim equilibrium 

when 0=r . On the other hand, in the ascending-bid auction the ultimate withdrawal decision 

should satisfy rbr =)(v . Thus, a symmetric equilibrium bidding function in the ascending-bid 

auction should satisfy the conditions for a symmetric interim equilibrium as well as rbr =)(v . 

The next proposition identifies a value-revealing bidding function as a unique symmetric 

equilibrium strategy.  
 

                                                 
4 Since we consider only continuous bid function and continuous value distribution, the probability of a tie is zero.  
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Proposition 3: (i) There exists a unique symmetric equilibrium strategy where each buyer plans 

to withdraw at her own value, at every interim equilibrium. (ii) In an ascending-bid auction as 

well as in a second-price sealed bid auction, there exists a unique symmetric equilibrium strategy 

where each buyer plans to withdraw at her own value. 
 

It was the reciprocal spite motive that eliminated the value-revealing bidding strategy 

from intention-based equilibrium in the complete information setting of Section 2.2. In the 

incomplete information setting, even when buyers are still motivated with reciprocal spite a 

value-revealing bidding function remains an equilibrium. This is also the case in the 

conventional setting with no psychological payoff. A key difference, however, is that a value-

revealing bidding function constitutes a dominant strategy equilibrium in the conventional model, 

but not in the model with spiteful preferences. 

The intuition behind Proposition 3 is as follows. When buyers face value uncertainty 

regarding their opponents, they are unable to identify their relative value position, which is a 

main factor igniting their spiteful and counter spiteful reactions. This part is embedded in the 

second term in (2.26). Because they are not certain of their relative position, they lose a basis of 

either overbidding or underbidding. This is the driving force leading to this equilibrium result. 

 

 
3. Experimental Design 

 The experiment consisted of 7 sessions of 12 subjects each (84 total subjects), all 

conducted with undergraduate econ major students at Shinshu University. Subjects bid in a series 

of two-bidder auctions with one item for sale. The principal treatment variables were the auction 

format (ascending price versus second-price sealed-bid) and information conditions (complete 

versus incomplete). Both of these treatment variables were varied within sessions, and in 4 

sessions all subjects bid in both formats and both information conditions. In the remaining 3 

sessions subjects only bid in complete information, sealed-bid auctions. Subjects submitted bids 

for 6 to 10 consecutive periods within each treatment configuration. A secondary treatment 

variable was the matching rule. This was also varied within sessions, so sometimes subjects bid 

against the same opponent for 6 to 10 periods, and at other times subjects bid against randomly-

changing opponents every period. The matching rule was common knowledge. The order of both 

the principal and secondary treatment variables changed across sessions. 
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 In the complete information treatment, the two possible resale values for the two bidders 

were 700 and 800 yen. These two values were randomly assigned each period, and this was 

common knowledge. Therefore, after a bidder learned that her resale value was 800 yen, for 

example, she knew with certainty that the other bidder’s resale value was 700 yen. In the 

incomplete information treatment, resale values were drawn independently for each bidder each 

period from the discrete uniform distribution between 500 and 800 yen. This probability 

distribution was common knowledge, but individuals only learned their own value draw. Bids 

were constrained to 10-yen increments, but value draws could be any whole yen amount in the 

feasible range. In all ascending-bid auction treatments the clock price increased in 10-yen 

increments. 

 Subjects received the difference between their resale value and their price paid when they 

won the auction. The price was determined by the lowest bid or the first drop-out price, 

depending on the auction format, with the highest or the remaining bidder winning the auction. 

(Ties were resolved randomly.) Subjects received written instructions to describe the auction 

rules and procedures, which they first read in silence before the experimenter read them aloud. A 

translation of the instructions is shown in Appendix B. At the conclusion of the session subjects 

received their cumulative auction winnings in cash, along with a 1000 yen show-up payment. 

Payments (including this show-up payment) averaged about 4500 yen, and ranged between 1590 

and 10788 yen. Sessions typically lasted about 150 minutes.  

 

4. Experimental Results 

4.1 Overview 

Recall that in the complete information environment, the valuations are either 700 or 800 

yen. Figures 3 and 4 display the frequency distribution of bids for the low-value (700) and high-

value (800) bidder, respectively.5 In the ascending-bid auction, 30 of the 291 bids for the low 

value bidder are not observed directly, since the low-value bidder won the auction when the 

                                                 
5 In the data analysis we exclude “throw-away” and overtly collusive bids, defined as bids less than 200, because 
our interest is in serious bids and competing buyers. A total of 67 bids were excluded using this criterion, which 
represents about two percent of the 3310 total bidding opportunities. We found only limited evidence that behavior 
differed between fixed groups and randomly-reformed groups of bidders. Collusion attempts were more common 
and successful in fixed groups, but since we are excluding collusive bids from our analysis the behavior is typically 
not significantly different across matching rules for the non-collusive bidders. Therefore, this initial summary and 
some of the subsequent analysis pools data across the two matching rules, while still controlling for different 
matching rules in the parametric regression models. 
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high-value bidder dropped out. These censored bids are at least as high as this drop-out price, so 

the minimum bid consistent with these prices (displayed on Figure 3) presents only the lower 

bound of the intended bid by this low-value bidder.6 The statistical tests below account for this 

censoring. 

In all panels of these figures, the modal bid equals the bidder’s value. Overbidding by the 

low-value bidder, however, is pronounced in Figure 3. About one-half of all bids exceed 700 (55 

percent in the ascending-bid auction and 49 percent in the second-price sealed-bid auction). 

Conditional on overbidding, the figure suggests that more aggressive bids such as 750 and 790 

are more common in the sealed-bid auction. This is reflected in the overall average bid submitted 

by the low-value bidder, which is 696 in the ascending-bid auction and 719 in the sealed-bid 

auction. Figure 4 suggests that underbidding is more common than overbidding for the high-

value bidder in the sealed-bid auction. 

Figure 5 summarizes the bid combinations for the complete information sealed bid 

auctions in the treatment in which pairs of bidders are randomly re-assigned each period. The 

modal bid pair is on the dominant strategy equilibrium (700, 800), but other pairs are common. 

Most of the pairs lie to the right of the line drawn on the surface of this diagram. This line 

indicates where the low-value bid equals the high-value bid. Therefore, the high-value bidder 

nearly always wins the auction even though many bids deviate from the dominant strategy 

equilibrium.  

Figure 6 presents the time series path of bids for three example fixed pairs of bidders in 

this complete information sealed bid environment. Because of these fixed pairings, subjects 

could react directly to each other’s bids in the previous periods.7 Some pairs (not shown on this 

figure) often played the dominant strategy equilibrium, but many other pairs frequently changed 

their bids across rounds as illustrated by the three pairs in Figure 6. Typically they remain below 

the Bid1=Bid2 line that distinguishes the efficient and inefficient allocations. Pairs were also 

quite heterogeneous. For example, Pair 2 exhibited substantial counter-spiteful behavior (even 

leading to two cases where the low-value bidder won), whereas Pair 3 did not exhibit any 

underbidding by the high-value bidder.  

                                                 
6 The censoring problem is much greater for the high-value bidder, since in the ascending-bid auction this bidder 
wins in 278 of the relevant 309 auctions. Therefore, we do not report a bid distribution for the high-value bidder for 
this auction institution, nor do we use such bids in any of the statistical tests that follow. 
7 Subjects switched roles randomly between the 700 and 800 value, however. 
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Figures 7 and 8 summarize the bids for the incomplete information environment. Recall 

that values are drawn from ]800,500[U . The figures display bids separately for the buyer with 

the highest and the lowest value draws, although subjects only observed their own value draw 

and therefore did not know their ranking. For reference the figures indicate a solid line where 

bid=value. Again, we do not include the ascending-bid auction bids for the highest value bidder, 

since this bidder nearly always won the auction and so his bid is typically not observed. 

Careful inspection of the figures should remind the reader that bids were constrained to 

10-yen intervals, while value draws could correspond to any integer yen amount. Therefore, by 

design the auctions will frequently feature bids that do not equal values. Overbidding and 

underbidding appear about equally common on the figures, although on average bids slightly 

exceed values (by less than one percent). 

 

4.2 Hypothesis Testing: Complete Information Environment 

This section reports tests of the hypotheses generated by the complete information model 

in Sections 2.1 and 2.2.  

Hypothesis H1: In the complete information environment, (a) low-value bidders overbid relative 

to their values, and (b) overbidding is more common for low-value bidders than for high-value 

bidders. 

Figure 3 shown above illustrates widespread overbidding for the low-value bidders. This 

indicates support for H1. To document how widespread this overbidding is across subjects, we 

determined how frequently individuals bid above their value when they had the low value draw 

in the complete information environment, across both auction institutions. Thirty-nine of the 84 

subjects (46 percent) submitted bids greater than their values in at least one-half of these cases. 

In other words, nearly half of the subjects submitted bids that exceeded their value at least half of 

the time when they knew that they had the lower value draw. By contrast, only 8 out of 84 

subjects (10 percent) submitted bids that were less than their values in at least half of these 

opportunities. 

Table 1 reports results from several random-effects regression models (with subjects as 

the random effect) to formally test part (b) of Hypothesis H1. These models include a dummy 

variable to indicate when the bid is submitted by the lower value bidder, and they also control for 

any time trend (using 1/period) and for the fixed versus random matching of bidding pairs. The 
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estimates only use the sealed bid auction data, since as already noted the ascending price bids for 

the high-value bidder are heavily censored because this bidder typically wins. 

The regression shown in column 1 indicates that bids relative to values are not 

significantly different between the low-value and the high-value bidders. The difference (Bid – 

Value) averages 20 yen for the low-value bidder and 19 yen for the high-value bidder. By 

contrast, column 2 indicates that the likelihood of overbidding is much higher for low-value 

bidders. Low-value bidders overbid 49 percent of the time, whereas high-value bidders overbid 

only 20 percent of the time. This difference is highly significant and provides strong support for 

Hypothesis H1. The theoretical model’s predictions are based on agents who have spiteful 

preferences. Therefore, columns 3 and 4 present estimates for the subset of subjects who bid 

above their value at least half the time when they had the low value draw. These 39 subjects 

represent roughly half the sample and their bids most clearly reveal spiteful preferences. The 

results indicate that these frequent over-bidders do not overbid arbitrarily, but instead they 

overbid more frequently when they have the lower value, consistent with Hypothesis H1. 

Hypothesis H2: In the complete information environment, (a) low-value bidders bid higher in 

the second-price sealed-bid auction than in the ascending-bid auction, and (b) overbids 

(especially large overbids) are more common in the second-price sealed-bid auction than in the 

ascending-bid auction. 

The figures and the summary statistics presented above provide some suggestive 

evidence in support of H2. For a systematic statistical test, however, we must account for the 

censoring of the bids in the ascending-bid auction. Recall that for this institution we do not 

observe the bid of the winning bidder—only the price at which the other bidder drops out. This 

censoring occurs for 30 of the 291 (10 percent) of the low-value bidders’ bids.  

We employ survival analysis to account for this censoring. This statistical methodology is 

common in fields such as medicine (where it gets its name) when the complement to survival—

failure—is death. In economics it is used, for example, to study the duration of unemployment 

spells or strikes.  In those cases, failure corresponds to finding a job or settling the strike. In the 

present application, “failure” occurs when the bidder drops out. The approach we use can 

account for differing censoring points, which occur when the other bidder drops out. 

Figure 9 presents a comparison of the Kaplan-Meier nonparametric estimate of the 

survival function S(x) = Prob(bid > x) for the two auction forms for the low-value bidders (e.g., 

see Cameron and Trivedi, 2005, Ch. 17). The median bid for the ascending-bid auction estimated 
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using this method is 710, compared to 700 for the sealed bid auction. Overbidding (defined as 

any bid > 700) occurs with probability 0.58 in the ascending-bid auction, and with probability 

0.49 in the sealed bid auction. The bid of 700, however, is the only place where the survivor 

function is higher for the ascending-bid auction. This is due to the higher mode of 700 in the 

sealed bid auction (cf Figure 3).  

For all other bids < 800, the survivor function estimates imply that the sealed bid auction 

has a higher probability of observing bids exceeding all particular bid prices that are higher than 

700. For example, if we define large overbid as a bid greater than or equal to 750, large 

overbidding occurs with probability 0.22 in the ascending-bid auction, and with probability 0.34 

in the sealed bid auction. A log-rank test rejects the null hypothesis that these survivor functions 

are equal ( 2
1 d.f 5.56χ = ; one-tailed p-value<0.01), and a parametric regression survival model 

(based on the exponential distribution and calculating standard errors to be robust to error 

clustering on individual subjects) also finds significant difference across treatments (t-

statistic=2.40; one-tailed p-value<0.01). We therefore conclude that the data support Hypothesis 

H2, but only for the case of large overbids and not small overbids. 

Since large overbids by low-value bidders are more common in the sealed-bid auction, a 

natural auxiliary hypothesis is that transaction prices are also higher in the sealed-bid auction: 

Hypothesis H3: In the complete information environment, (a) transaction prices are higher in 

the second-price sealed-bid auction than in the ascending-bid auction, and (b) prices above 700 

(especially well above 700)  are more common in the second-price sealed-bid auction than in the 

ascending-bid auction. 

Figure 10 indicates that the cumulative distributions of transaction prices for the two 

auction institutions are ordered consistent with Hypothesis H3, since the sealed-bid CDF is lower 

than the ascending-bid CDF for the critical range of prices between 710 and 790. Table 2 

indicates, however, that when considering all prices the data fail to reject the hypothesis that 

prices are equal across institutions (model 1), or that high prices are equally likely in either 

auction institution (model 2). Many of the prices are in the range of 690 to 710, which occur 

when the low-value bidder adopts a value-revealing strategy. Therefore, in order to focus on bids 

that reflect considerable spitefulness, columns 3 and 4 report these same models after excluding 

the prices that are less than 711. Within this subset of data, which represents 38 percent of the 

price observations in columns 1 and 2, column 3 shows that transaction prices are significantly 
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higher (by 11 yen) in the sealed-bid auction compared to the ascending-bid auction. Column 4 

shows that the estimated likelihood that prices within this subsample exceed 740 increases from 

25 percent in the ascending-bid auction to 54 percent in the sealed-bid auction. We therefore 

conclude that the data support the price differences indicated by Hypothesis H3, but only when 

excluding lower prices that arise from value-revealing bid strategies. 

We conclude this subsection with a brief summary of auction efficiency. Recall that in 

equilibrium with spiteful preferences the low-value bidders bid less aggressively in the 

ascending-bid auction, relative to the sealed-bid auction, because the high-value bidders shade 

their planned bid (drop-out price) as the calling price rises above the low value. This is what 

leads to the lower predicted rate of large overbids in the ascending price auction. Note that it can 

also lead the low-value bidder to (inefficiently) win the auction less frequently in the ascending-

bid auction than in the sealed-bid auction. Consistent with this pattern, in the complete 

information auctions the high-value bidder has the low bid in 11 percent of the ascending-bid 

auctions and 15 percent of the sealed-bid auctions. This difference is marginally significant 

based on a random effects probit model (t-statistic=1.41; one-tailed p-value<0.08). This suggests 

that the ascending-bid auction is marginally more successful in implementing efficient 

allocations. 

 

4.3 Hypothesis Testing: Incomplete Information Environment 

Section 2.3 established that even with spiteful preferences, in the incomplete information 

(unknown values) environment a unique symmetric equilibrium strategy exists where each 

bidder bids at her own value. Figures 7 and 8 indicate that significant dispersion of bids occurs 

both above and below value in the incomplete information data. Nevertheless, is not possible to 

reject the null hypothesis that a linear bid function fit on the incomplete information sealed bid 

data has an intercept of 0 and a slope of 1, consistent with the equilibrium model ( 2
2 d.f 1.02χ = ; 

p-value=0.60). A more stringent test of the model, however, is that bids shift between the 

complete and incomplete information environments as predicted by spiteful preferences. 

Hypothesis H4: (a) Low-value bidders bid higher and (b) high-value bidders bid lower in the 

complete information environment compared to the incomplete information environment. 

This hypothesis is particularly demanding because in the incomplete information 

environment subjects do not know when they have the low or high value draw. They may have 
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reasonably confident beliefs when they have very low value draws near 500 or very high value 

draws near 800, but not when they have intermediate values in the range between 600 and 700. 

Since bids are typically not observed for the higher value bidder in the ascending-bid 

auction, to test this hypothesis we consider only the sealed bid auction where all bids are 

observed. In order to make the two environments comparable, we normalize all bids by 

subtracting value, and then regressing this difference on a dummy variable for the complete 

information environment, and the same control variables as in the regressions reported above. To 

be consistent with Hypothesis H4, the dummy variable for the complete information 

environment should be positive for low-value bidders (H4a) and negative for high-value bidders 

(H4b). The results, shown in Table 3, only indicate support for Hypothesis H4a, and only when 

restricting the analysis to the subsample of frequently overbidding subjects.  

Another implication of the equilibrium result that bids should equal values in the 

incomplete information environment is that there should not be significant differences between 

bidding behavior for low and high value bidders.  

Hypothesis H5: In the incomplete information environment, overbidding is not more common 

for low-value bidders than for high-value bidders. 

This hypothesis is the counterpart of Hypothesis H1(b), where for the complete 

information environment the hypothesis was that overbidding is more common for low-value 

bidders than for high-value bidders. Recall that Table 1 presented models of bid deviations and 

overbidding that partially supported Hypothesis H1(b). The likelihood of overbidding is much 

higher for low-value bidders in the complete information environment, but the deviation between 

bid and value was not significantly different between low- and high-value bidders. Table 4 

reports the identical models for the incomplete information environment, but this time the 

research hypothesis (H5) corresponds to the statistical null hypothesis that the dummy variable 

for the lower value is not significantly different from zero.8 Consistent with Hypothesis H5, we 

find no evidence that bidding behavior is different for the low- and high-value bidders. 

Curiously, however, overbidding is significantly more common in the treatment with fixed 

pairings. We have no explanation for this result. 

The final hypothesis is the incomplete information counterpart to Hypothesis H2. Recall 

that with complete information, overbids by the low-value bidder are predicted to be larger in the 
                                                 
8 As in Table 1, we only employ the sealed bid auction data in these regressions because the high-value bidders’ bids 
are rarely observed in the ascending price auction. 
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second-price compared to ascending-bid auction. By contrast, with incomplete information there 

should be no systematic difference between the bids across auction institutions. 

Hypothesis H6: In the incomplete information environment, (a) lower value bidders do not bid 

higher in the second-price sealed-bid auction than in the ascending-bid auction, and (b) overbids 

(especially large overbids) are not more common in the second-price sealed-bid auction than in 

the ascending-bid auction. 

We test Hypothesis H6 in exactly the same way that we tested Hypothesis H2. To 

account for the censoring of the bids in the ascending-bid auction, we again employ survival 

analysis. In the incomplete information environment, this censoring occurs for 30 of the 372 (8 

percent) of the low-value bidders’ bids. Figure 11 presents a comparison of the Kaplan-Meier 

nonparametric estimate of the survival function for the two auction forms for the low-value 

bidders. The median bid for the ascending-bid auction estimated using this method is one yen 

above value, compared to one yen below value for the sealed bid auction. Overbidding (defined 

as any bid > value) occurs with probability 0.54 in the ascending-bid auction, and with 

probability 0.40 in the sealed bid auction. There is virtually no evidence that large overbids are 

different for the two auction institutions, and the survivor functions are essentially identical for 

all bids that are 20 or more yen greater than value. Moreover, a log-rank test fails to reject the 

null hypothesis that these survivor functions are equal ( 2
1 d.f 2.03χ = ; p-value=0.15). We therefore 

conclude that the data support Hypothesis H6: Overbidding by low value bidders in the 

incomplete information environment is not different in the sealed-bid and ascending-price 

auctions. 

 

5. Conclusion 

 We have investigated bidding behavior in both complete and incomplete information 

environments for two-person second-price sealed-bid auctions and ascending-bid auctions for a 

single indivisible object with independent private values. Our intention-based bidding model 

features individuals who may be spiteful in the sense that they collect a positive psychological 

payoff when losing if they reduce the winners’ payoff. Incorporating reciprocity as a basic 

motivation of individuals can result in distinctive bidding behavior in these two auction 

institutions under complete information.  
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 When bidders have reciprocal preferences, a bidder who faces a spiteful bidder’s over-

bidding would retaliate by underbidding to increase the likelihood that the spiteful bidder wins 

and incurs a negative payoff.  This possibility of counter-spite bidding causes spiteful bidders to 

refrain from bold overbidding. Our theoretical analysis concludes that the equilibrium bidding 

strategy differs from the Nash equilibrium strategy set generated without spite and counter-spite 

bidding, in the following three respects. First, the intention-based equilibrium strategy set is 

much smaller and does not contain any inefficient outcomes. Second, although a “bidding at 

one’s value” strategy is no longer part of an intention-based equilibrium strategy profile, the 

equivalent outcome in which only the lower value bidder bids at her own value is one of the 

equilibrium outcomes. Third, the threat of counter-spite bidding is more important in ascending-

bid auctions than second-price sealed-bid auctions, since a rising calling price reveals the spiteful 

intention of a losing, low-value bidder. This leads to a lower equilibrium spiteful over-bidding in 

ascending-bid auctions, which implies an even smaller equilibrium set with lower price upper 

bound. 

 Our experimental results are broadly consistent with the model’s qualitative theoretical 

predictions. In the complete information setting, nearly half of the bids reflect spiteful 

overbidding. Bidders with lower private values are more prone to overbid in both auction 

formats, and their bidding behavior is more aggressive in the second price auctions than in the 

ascending-bid auctions. However, such systematic overbidding disappears when bidders’ private 

values are random variables in the incomplete information setting, which is also consistent with 

the model.  

 Subjects’ decision making seems to be different when they do or do not know each 

others’ values. When they have complete information about all bidders’ values, this allows them 

to evaluate their relative payoffs. A low-value bidder who bids 750, for example, knows that this 

bid will likely reduce the winning bidder’s payoff by half relative to the payoff if all bids equal 

values. A bidder with the higher value can also perceive spiteful intentions of her opponent’s bid 

in the complete information environment. It is this spiteful intention that induces a counter 

spiteful bid by the higher value bidder. This is the driving force behind our theoretical result that 

bidders make more timid overbids in the ascending-bid auction, because the rising calling price 

directly reveals the lower value bidder’s spiteful intention. On the other hand, in the incomplete 

information setting bidders cannot assess their relative payoff position so their reciprocal 

motivation is not primed and they have much less incentive for spiteful overbidding.  
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Morgan et al. (2003) proposed a model with spiteful but not reciprocal bidders. Their 

investigation focuses on the incomplete information environment. In their model, bidders always 

overbid in both second price and ascending-bid auctions. Applying their model of preferences to 

the case of complete information yields a different equilibrium strategy set from that in our 

model. Their equilibrium set consists of only efficient outcomes as well, but does not contain the 

outcome which can also be generated by a value-revealing bidding strategy. Unlike ours, their 

model also predicts no difference in spiteful bidding behavior between the second price and the 

ascending-bid auction. Although their model is well-motivated empirically, they did not test their 

theoretical implications with field or laboratory data. Our experimental results do not support 

their predictions for either the complete or incomplete information environment.  This can be 

interpreted as an additional evidence of negative reciprocity at work, but here in the context of an 

auction, consistent with negative reciprocity observed in the context of ultimatum and related 

games (e.g., see Charness and Rabin, 2002). 

 In zoology, it is well-known that reciprocal behavior is prevalent among variety of 

species, even including crabs (Hamilton, 1970). Animals that form herds can distinguish between 

self and others, and recognize relative positions between them. But according to Frith and Frith 

(1999), it is a distinctive characteristic among large apes such as chimpanzees and humans that 

individuals choose their actions or reactions by conjecturing intentions of others. This suggests 

that intention-based reciprocity may be embedded deep in human minds through evolution. 

Auction markets have been used for exchange since the birth of ancient civilizations, so it seems 

quite plausible that auction markets emerged as social institutions that function robustly with 

reciprocity and may even take advantage of humans’ reciprocal motivations.       
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Table 1: Regression Models of Bid Deviations from Value and Overbidding:  
Complete Information Environment, Sealed Bid Auction 

 
     All Bidders   Frequent Over-Bidders 

Model 1 (Random 
Effects GLS) 

2 (Random 
Effects Probit) 

3 (Random 
Effects GLS) 

4 (Random 
Effects Probit) 

Dependent Variable Bid - Value = 1 if Bid > 
Value Bid - Value = 1 if Bid > 

Value 
Dummy Variable=1 if 
Lower Value 

-0.38 
(23.76) 

1.42** 
(0.13) 

2.22 
(38.42) 

1.70** 
(0.17) 

Dummy Variable=1 for 
Fixed Pairings 

22.51 
(15.43) 

0.29** 
(0.11) 

39.75 
(37.42) 

0.18 
(0.14) 

1/period 70.65 
(69.08) 

-0.22 
(0.19) 

131.97 
(153.40) 

-0.36 
(0.24) 

Intercept -18.36 
(25.20) 

-1.63** 
(0.23) 

-24.54 
(39.82) 

-0.47* 
(0.23) 

Observations 1116 1116 535 535 
Number of Bidders 84 84 39 39 
R2 or Log-likelihood 0.01 -448.7 0.01 -258.3 
Notes: Standard errors (in parentheses) are based on a subjects random effects model and for the GLS 
regressions in columns 1 and 3 are calculated to be robust to unmodeled correlation of choices within 
clusters defined by sessions. 
* denotes significantly different from zero at the five-percent level, and ** denotes significantly different 
from zero at the one-percent level. 

 
 
 
 

Table 2: Regression Models of Transaction Prices and Likelihood of High Prices: 
Complete Information Environment  

 
     All Prices   Excluding Prices < 711 

Model 1 (Random 
Effects GLS) 

2 (Random 
Effects Probit) 

3 (Random 
Effects GLS) 

4 (Random 
Effects Probit) 

Dependent Variable Price = 1 if Price > 740 Price = 1 if Price > 740 
Dummy Variable=1 if 
Sealed-Bid Auction 

-6.09 
(5.46) 

0.06 
(0.12) 

11.36** 
(3.07) 

0.77** 
(0.16) 

Dummy Variable=1 for 
Fixed Pairings 

3.35 
(4.60) 

-0.01 
(0.10) 

-4.73 
(2.91) 

-0.17 
(0.15) 

1/period 1.87 
(8.04) 

-0.05 
(0.17) 

-3.98 
(4.92) 

-0.20 
(0.25) 

Intercept 713.10** 
(8.96) 

-0.65** 
(0.20) 

754.09** 
(3.59) 

0.22 
(0.18) 

Observations 832 832 312 312 
Number of Sessions 7 7 7 7 
R2 or Log-likelihood 0.00 -453.4 0.05 -178.7 
Notes: Standard errors (in parentheses) are based on session random effects models. 
* denotes significantly different from zero at the five-percent level, and ** denotes significantly different 
from zero at the one-percent level. 
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Table 3: Regression Models of Bid Deviations from Value to Compare the Complete and 
Incomplete Information Environments 

 
     All Bidders   Frequent Over-Bidders 

Model 1 (Lower Value 
Bidders) 

2 (Higher Value 
Bidders) 

3 (Lower Value 
Bidders) 

4 (Higher Value 
Bidders) 

Dependent Variable Bid - Value Bid - Value Bid - Value Bid - Value 
Dummy Variable=1 if 
Complete Info. 
Environment 

0.94 
(10.17) 

11.36 
(18.25) 

16.89** 
(5.35) 

34.84 
(37.07) 

Dummy Variable=1 for 
Fixed Pairings 

2.33 
(7.63) 

24.87 
(15.20) 

1.10 
(7.61) 

59.47 
(50.78) 

1/period -3.53 
(7.37) 

79.61 
(75.12) 

-7.58 
(7.87) 

193.48 
(208.12) 

Intercept 16.13 
(8.95) 

-34.02 
(37.40) 

32.49** 
(9.98) 

-91.26 
(101.83) 

Observations 919 954 414 389 
Number of Bidders 84 84 39 39 
R2  0.00 0.01 0.10 0.02 
Notes: Standard errors (in parentheses) are based on a subjects random effects model and are calculated to 
be robust to unmodeled correlation of choices within clusters defined by sessions. 
* denotes significantly different from zero at the five-percent level, and ** denotes significantly different 
from zero at the one-percent level. 

 
 
 

Table 4: Regression Models of Bid Deviations from Value and Overbidding:  
Incomplete Information Environment, Sealed Bid Auction 

 
     All Bidders   Frequent Over-Bidders 

Model 1 (Random 
Effects GLS) 

2 (Random 
Effects Probit) 

3 (Random 
Effects GLS) 

4 (Random 
Effects Probit) 

Dependent Variable Bid - Value = 1 if Bid > 
Value Bid - Value = 1 if Bid > 

Value 
Dummy Variable=1 if 
Lower Value 

3.43 
(3.75) 

0.003 
(0.130) 

5.07 
(6.26) 

0.011 
(0.203) 

Dummy Variable=1 for 
Fixed Pairings 

3.79 
(4.44) 

0.93** 
(0.14) 

3.93 
(7.86) 

1.26** 
(0.21) 

1/period -8.53** 
(3.19) 

-0.82** 
(0.24) 

-4.80 
(6.69) 

-0.55 
(0.36) 

Intercept 1.30 
(3.37) 

-0.88** 
(0.30) 

12.74* 
(5.56) 

0.02 
(0.36) 

Observations 757 757 268 268 
Number of Bidders 48 48 17 17 
R2 or Log-likelihood 0.01 -316.8 0.01 -128.3 
Notes: Standard errors (in parentheses) are based on a subjects random effects model and for the GLS 
regressions in columns 1 and 3 are calculated to be robust to unmodeled correlation of choices within 
clusters defined by sessions. 
* denotes significantly different from zero at the five-percent level, and ** denotes significantly 
different from zero at the one-percent level. 
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Figure 1: Equilibrium Set of an Ascending-bid Auction without Spite or Counter-

Spite 

Figure 2: Example of Equilibrium Set in an Ascending-bid Auction with Spite and 

Counter-Spite Motivations 
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Figure 3a: Distribution of Ascending Price Auction Bids for Value=700
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Figure 3b: Distribution of Second Price Sealed Auction Bids for 
Value=700
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Figure 4: Distribution of Second Price Sealed Auction Bids for 
Value=800
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Figure 6: Example Fixed Pairs Sealed Bids in Complete Information 
Environment
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Figure 7a: Ascending Price Auction Bids for the Lower Value in 
Incomplete Information Environment
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Figure 7b: Second Price Sealed Auction Bids for the Lower Value in 
Incomplete Information Environment
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Figure 8: Second Price Sealed Auction Bids for Highest Value in 
Incomplete Information Environment
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Figure  9: Comparison of Bid (Survivor) Functions for Complete  Information with Value=700
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Figure 10: Cumulative Distribution Function of Transaction Prices for 
Complete Information Auctions
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Figure  11: Comparison of Bid (Survivor) Functions for Incomplete  Information Low-Value
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APPENDIX A 

PROOF OF LEMMA 1a: From (2.19), it is immediate that one of the solutions to 0),(2 =rxϕ  

is 2v=x , irrespective of the value of r. Considering that the rule of the ascending-bid auction 

does not allow any bid below r, however, we notice that there is no solution to 0),(2 =rxϕ  if 

r≤1v  because 0),(2 <rxϕ  for all rx ≥ . When r>1v and 1v≥x , we also have 

0),(2 <rxϕ  and again there is no solution. It comes down to consider the case 1v<x  and 

r≥− ε1v . Rewrite equation (2.19) as 

( )
( ) ⎥
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⎠
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+−

−−
−−=

2
21

12
22

),max(

)(
1)(),(

ε

γ
ϕ

vv
v

v
r

x
xrx . 

The second parenthesis is positive for all 0≥x . It follows that 0),(2 >rxϕ  for all 2v<x , and 

0),(2 <rxϕ  for all ),( 12 vv∈x . Thus, there is a unique solution to 0),(2 =rxϕ , 2v=x .   n 

PROOF OF LEMMA 1b: (i) (ii) (iii) Consider first the case 1v>r . By the rule of the 

ascending-bid auction, any bid x must satisfy rx ≥ . Then, there is no solution to 0),(1 =rxϕ , 

because 0),(1 <rxϕ  for all rx ≥ .  

Second, consider the case 1v≤r . The relevant function in (2.18) is 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−

−
−−−=

2
21

21
211

},max{

)0,min(
)(][),(

ε

γ
ϕ

r

x
xxrx

vv
v

vv .             (A.1) 

When 2v<x  and 2v<r , (A.1) reduces to xrx −= 11 ),( vϕ , which is positive, and there is no 

solution for this bid range. Next, consider a bid level x such that 2v≥x , while 1v≤r . The 

function ),(1 rxϕ  in (2.18) becomes  

2

21

2
111 },max{

][),( ⎟⎟
⎠

⎞
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⎝

⎛
+−

−
−−=

ε
γϕ

vv
vv

r
x

xrx ,              (A.2) 

Noting that 0),( 21 >rvϕ  and 0),( 11 <rvϕ , for any 1v≤r . Since the function ),(1 r⋅ϕ  is 

continuous, by the mean value theorem, there exists a real number rz 1β=  that satisfies 

0),( =rzϕ , located between 2v  and 1v . And such r
1β  is unique for a given 1v≤r , since 
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),(1 rxϕ  is a quadratic function of x with negative coefficient attached to 2x . In particular, at the 

terminal node ∗r ,  H
rx ββ ==
∗

1  is a solution to 0),(1 =∗rxϕ  with xr =∗ , equivalently 
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v .     (A.3) 

It is immediate from (A.3) that 0
11 ββ =

∗r  for all 2v≤
∗r , and ∗==

∗
rH

r ββ1  for all 

],( 12 vv∈∗r . 

(iv) (v) (vi) As ),(1 ⋅⋅ϕ  is continuous in both arguments, applying the implicit function theorem to 

0),(1 =rzϕ , we obtain  
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Since ),( 121 vv∈rβ , the sign of (A.4) is strictly negative, which means that r
1β  is strictly 

decreasing in r, and the lowest among r
1β  coincides with the one at the terminal node, where 

== rr
1β Hβ , and we have rr <1β  for all ],( 1vHr β∈ , but it is of course not possible to bid at 

rr <1β  by the rules of the auction.   

(vii) Applying the implicit function theorem to both (A.1) and (A.2), we examine a relationship 

between the solution of (A.1) and (A.2) respectively and the psychological payoff coefficient 1γ , 

by calculating 

)(2)(
)(

);(
);(

211

2
21

1

1

1 zr
z

zrz
rz

d
d

d
dz r

−++−−
−−

−=
∂∂
∂∂

−==
vv

v
γεϕ

γϕ
γ
β

γ
, 

and  . 

))((2)(
)(

);(
);(

1221
3

1

2
2

1

11

11 εγεϕ
γϕ

γ
β

γ −−−++−−

−−
−=

∂∂
∂∂

−==
vvvv

v
xx

x
xxx

xx
d
d

d
dz H . 



 

 A-3

Since any solution to (A.1) and (A.2) is located within the range ),( 12 vv , both of the above 

derivatives have a strictly negative sign. n 

PROOF OF LEMMA 1c: We need to examine whether the property obtained in lemma 1b 

remains valid when we restrict these solutions to be consistent with the minimum bid unit ε .  

(i) For all },,2,,0{ 2v"εε∈r , it is obvious that r
1β̂ = 0

1β̂ . 

(iii) Lemma 1b (iv) implies that rr ′≥ 11
ˆˆ ββ  for all },,{, 12 vv "ε+∈′rr  such that rr ′< . And 

in particular, if εββ HHr ˆ== , we have εβεββ H
rr ˆˆ

11 == . Otherwise, )ˆ,ˆ( εεβεββ +∈ HHH . 

(ii) (iv) If εββ HHr ˆ==  and we have εβεββ H
rr ˆˆ

11 == , the assertion (ii) and (iv) follows 

from r
1β  being strictly decreasing in r. Suppose that )ˆ,ˆ( εεβεββ +∈ HHH . Since r

1β  is 

strictly decreasing in r and H
H ββ β =1 , εεββ εεβ +<+

H
H ˆˆ

1 . This means that buyer 1 would 

never reach the decision point εεβ += Hr ˆ . If εββ εβεβ HH
ˆ

1
ˆ

1
ˆ= , then εβ εβH

ˆ
1  is the actual 

threshold bid. Consider the case εββ εβεβ HH
ˆ

1
ˆ

1
ˆ≠ . Since εββ HH

ˆ>  and r
1β  is strictly 

decreasing in r, we have εββ ββ HH
ˆ

11 < . Also εββ εβ
H

H ˆˆ
1 > , since H

H ββ β =1  and 

εββ HH
ˆ>  . This leads to εββ εβ

H
H ˆˆ ˆ

1 ≥ . Since εβHr ˆ=  is the terminal node, for all 

εβHr ˆ≤ , we have rr ≥εβ1
ˆ . Similarly, since we know from lemma 1b that rr <1β  when 

εβ )1ˆ( +≥ Hr , we have rr <1β̂  for all },,)1ˆ{( 1v"εβ +∈ Hr . But such rr <1β̂  is not well 

defined under the rules of the ascending-bid auction.  

(v) Suppose that εββ rr
11

ˆ=  for some γγ =1 . Then, since Br ∈1β  is strictly decreasing in 1γ  

from lemma 1b (vii), the corresponding threshold withdrawal bid when e+= γγ1  for small 

+ℜ∈e  should be equal or less than εβ )1ˆ( 1 −r . Next suppose that ))1ˆ(,ˆ( 111 εβεββ +∈ rrr  for 

some γγ =1 . In this case, the threshold withdrawal bid when γγ =1  is again equal to εβ r
1

ˆ .  



 

 A-4

The threshold withdrawal bid corresponding to e+= γγ1  is not necessarily less than εβ r
1

ˆ , 

depending upon the magnitude of parameters, such as buyers’ values, 1γ , and ε . Yet since 

Br ∈1β  is strictly decreasing in 1γ , the threshold withdrawal bid is not increasing.   n  

 

PROOF OF PROPOSITION 1: (i) (ii) In order to prove the proposition, we shall start by 

proving two lemmas. The first one concerns buyer 2’s best response to anticipated buyer 1’s bid 

under the consistent beliefs. 
 

Lemma A1: Assume that buyer 2’s beliefs satisfy the interim consistency requirement at any 

interim decision point Br∈ .  

(i) For all },,,,0{ 11 vv εε −∈ "r  and all rrrr BBbb 2121221 ),( ×∈ ,  
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(ii) For all },,{ 1 br "ε+∈ v  and rrrr BBbb 2121221 ),( ×∈ ,  

}{),( 212212212
rrrrr bbBbbbBR <∈=  if },,{21 brbr "∈ . 

 

Proof of Lemma A1: It follows from lemma 1a that when 221 v≠rb , it does not pay for buyer 2 

to place a tie bid. Consider the case },,,,0{ 11 vv εε −∈ "r , where there is a relevant threshold 

bid. When },,,{ 221 εε −+∈ v"rrbr , buyer 2 prefers to win. When },,{ 221 bbr "ε+∈ v , it is 

better off for buyer 2 to lose but place a maximum losing bid equal to ε−rb21 , because her 

spiteful losing utility is increasing in her own bid. And when 221 v=rb , buyer 2 is indifferent 

between placing a tie bid and placing a winning high bid. Next consider the case 

},,{ 1 br "ε+∈ v . Then, it is obvious from (2.19) that buyer 2 always prefer to lose by placing 
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any lower bid. n   

 

Similarly, the next lemma states buyer 1’s best response. 
 

Lemma A2: Assume that buyer 1’s beliefs satisfy the interim consistency requirement. 

(i) For all }ˆ,,,,0{ 1 εβεε Hr −∈ v" and all rrrr BBbb 2121221 ),( ×∈ ,  
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(ii) For all },,,,)1ˆ{( 1 br H "" vεβ +∈ and all rrrr BBbb 2121221 ),( ×∈ ,  

}{),( 121121121
rrrrr bbBbbbBR <∈= .  

 

Proof of Lemma A2: (i) There are two cases to examine, when εββ rr
11

ˆ=  and when 

εββ rr
11

ˆ≠ . Let us examine the former case first. Suppose that bidder 1 expects bidder 2 to bid at 

εβ rrb 112
ˆ= , which is exactly the bidder 1’s threshold bid characterized by lemma 1. Noting that 

buyer 1’s losing utility is increasing in her own bid, her best response is to place a tie bid or a 

higher winning bid. Next suppose that buyer 1 expects rb12  to be less than or equal to εεβ −r
1

ˆ . 

Then, 0),(1 >rxϕ  for εεβ −≤ rx 1
ˆ  and buyer 1 strictly prefers to win. Her best response is to 

place a bid strictly higher than rb12 . Suppose that buyer 1 expects rb12  to be larger than εβ r
1

ˆ . 
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Then 0),(1 <rxϕ  for εβ rx 1
ˆ>  and she strictly prefers to lose. Since her losing utility is 

increasing in her bid, her best response is to place a bid exactly at the level of ε−rb12 . Next let 

us examine the case where εββ rr
11

ˆ≠ . There is no bid level available for buyer 2 that makes 

buyer 1 indifferent between winning and losing. Thus, buyer 1 strictly prefers to win when she 

expects buyer 2 to bid at εβ )(ˆ r  or less, and otherwise she strictly prefers to lose by placing a 

bid exactly at ε−rb12 . 

(ii) When the calling price r exceeds 1v , buyer 1’s utility consists only of her own monetary 

payoff. Then we are back to the conventional auction model, where we already know that buyer 

1’s best response to rb12  exceeding 1v  is to place any lower losing bid, including withdrawing 

right at r. On the other hand, the last sentence of Lemma 1 (iii) asserts that there is no meaningful 

threshold value for the range },,)1ˆ{( br H "εβ +∈ , because εβH
ˆ  is the maximum threshold 

bid level and bidding less than the calling price r is not possible under the rule of ascending-bid 

auction. Therefore, even when the calling price is below 1v , buyer 1’s best response is to place 

any losing bid including r. n 

 

The above two lemmas directly facilitate the proof of Proposition 1.  

Proof of Proposition 1: To prove the sufficiency part, suppose that a withdrawal bid profile 

rrrr BBbb 2121 )ˆ,ˆ( ×∈  satisfies the conditions stated in proposition 1. From lemma A1 and A2, it is 

easy to check that )ˆ,ˆ(ˆ
112121211
rrrrrr bbbbBRb ==∈  and )ˆ,ˆ(ˆ

221212112
rrrrrr bbbbBRb ==∈  at the 

same time. When beliefs satisfy the interim consistency requirement, this implies 

r
AB

rr Ebsbs ∈))ˆ(),ˆ(( 2211 . 

 Next consider the necessity part. Since each component of a pair of interim equilibrium 
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strategies r
AB

rr Ebsbs ∈))(),(( 2211  is best response to each other under the consistent interim 

beliefs, the pair of equilibrium strategies should satisfy all the properties stated in Lemma 1, A1, 

and A2. It is easy to check that if a strategy pair ))(),(( 2211
rr bsbs  is an equilibrium, ε−= rr bb 12  

holds. Once r passes bidder 1’s threshold bid εβ r
1

ˆ , there is no interim equilibrium.  

We need to pay attention to defining the range that equilibrium withdrawal bid can take, 

because the boundary of the range varies depending upon whether the exact threshold value 

Br ∈1β  for a given r is consistent with the minimum bid unit ε  or not. Consider the case, first, 

where εββ rr
11

ˆ=  holds. From lemma 1, A1, and A2, it follows that when εββ HH
ˆ= , a 

withdrawal bid profile generated by an equilibrium strategy ),( 21
rr bb  satisfies ε−= rr bb 12  and 

εβε rrb 112
ˆ≤≤+v , for all Br∈  such that εβ −≤ Hr , and 0/=r

ABE  for all Br∈  such that  

Hr β≥ . When εββ HH
ˆ≠ , an equilibrium strategy pair satisfies ε−= rr bb 12  and 

εβε rrb 112
ˆ≤≤+v  for all Br∈  such that εβHr ˆ≤ , and 0/=r

ABE  for all Br∈  such that  

εβ )1ˆ( +≥ Hr .  

Next consider the case εββ rr
11

ˆ≠ . When εβ rrb 12
ˆ= , buyer 1 still prefers to win since 

the actual threshold is yet higher than her opponent’s bid, i.e., εββ rr
11

ˆ> . Thus, a withdrawal bid 

profile generated by an equilibrium strategy profile should satisfy that as ε−= rr bb 12  and 

εβε ]1)(ˆ[12 +≤≤+ rbrv , for all Br∈  such that εβ −≤ Hr  when εββ HH
ˆ=  and for 

all Br∈  such that εβHr ˆ≤  when εββ HH
ˆ≠ . And 0/=r

ABE  for all Br∈  such that 

Hr β≥ , when εββ HH
ˆ= , and for all Br∈  such that εβ )1ˆ( +≥ Hr  when εββ HH

ˆ≠ .   n 
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PROOF OF LEMMA 2: Lemma 1 tells that if },,,{, 122 vvv "ε+∈′rr  we have rr ′≥ 11
ˆˆ ββ , 

and rr ′= 11
ˆˆ ββ  if },,,0{, 2 εε −∈′ v"rr , for any and rr >′ . From Proposition 1, it means that 

the upper bound of the equilibrium withdrawal bid rb1  is non increasing. Noting that 1v<r  by 

definition and that the lower bound of equilibrium rb1  is },max{ 2vr , which is strictly 

increasing after a calling price r passes 2v , it is immediate that for any rr >′ , r
AB

r
AB EE ′⊃  if 

},,,{, 22 rrr "ε+∈′ vv , and r
AB

r
AB EE ′=  if },,,0{, 2 εε −∈′ v"rr . Thus, the assertion 

follows.  n 

 

PROOF of PROPOSITION 2: (i) To prove the sufficiency part, first suppose that 

r
ABEbsbs ∈∗∗ ))(),(( 2211 . Since Lemma 2 implies that ∩

" },,2,,0{ rr

r
AB

r
AB EE

εε∈

= , r
ABEbb ∈∗∗ ),( 21  for all 

},,,0{ rr "ε∈ . Thus, ),( 21
∗∗ bb  satisfies the equilibrium conditions described in Definition 2, 

i.e., ),( r
iji

r
ij

r
ii bbBRb ∈∗ , and ∗∗ == i

r
ijij

r
ij bbbb ,  for each },,,0{ rr "ε∈  and }2,1{, ∈ji  with 

ji ≠ . Therefore, ABEbb ∈∗∗ ),( 21 . Next, suppose that rEbsbs ∈∗∗ ))(),(( 2211 . Proposition 1 and 

Lemma 2 implies that ∩ " }0,,{ε∈
= k kr EE . Noting that 0

},,0{ AB
k
ABrk EE =−

∈
ε

"∪ , 

0
2211 ))(),(( ABEbsbs ∈∗∗  as well, hence the initial consistency requirement is met and maintained 

through, i.e., ∗= jij bb0  and ∗= iiji bb0 . Thus, ),( 21
∗∗ bb  satisfies the equilibrium conditions 

described in Definition 2. 

 In order to prove the necessity part, consider the case of εββββ H
ˆ

1
0
1

ˆˆˆ == , first. This is 

the case where the interim equilibrium sets do not experience any shrink as the calling price 

climbs above 2v , i.e., 0
AB

r
AB EE =  for all },,,,{ 2 rr "" vε∈ . Therefore any 

r
r
AB EEbsbs ∪∉))(),(( 2211  can not be equilibrium. Next, consider the case εβββ H

ˆ
1

ˆˆ ≠ . Then, 
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by Lemma 1, we can find some },,,{,~
22 rrr "ε+∈′ vv  such that rr ′<~  and rrr

11
~

1
ˆˆˆ βββ ≥> ′ . 

Suppose that a strategy profile r
r
AB EEbsbs ∪∉))~(),~(( 2211  but r

r
AB EEbsbs ′
′∈ ∪))~(),~(( 2211 . 

Considering that the interim equilibrium set contracts from both upper and lower bound, the pair 

of beliefs satisfies ),()~,~( rrbbbb r
ijiiji

r
ijij ≥== ′′ , for jiji ≠∈ },2,1{, , hence buyers do not revise 

their beliefs at the new and the last decision point rr = . Noting, however, that 

( ){ }jijirbbbBRbBBbbE i
r
iji

r
ij

k
irkir ≠∈≤∈×∈= −

∈ },2,1{, , and ,),(, },,{2121
ε

ε "∪ , and 

∩
" },,2,,0{ rr

r
AB

r
AB EE

εε∈
=  by Lemma 2, )~,~( 21 bb  does not fulfill the equilibrium conditions required 

in Definition 2, and consequently w
ABEbsbs ∉))~(),~(( 2211 , which is a contradiction.   

(ii) The assertion immediately follows from Lemma 2 and Definition 3.  n 

 

PROOF OF COROLLARY: (i) It is implied by Lemma 1. (ii) It is straightforward from Lemma 

2 and Proposition 2. n 

 

PROOF OF PROPOSITION 3: Consider a bidding function )(⋅rb  that is strictly increasing 

and 0)0( =rb . At every decision point r, each bidder chooses an optimal Vx∈  which 

maximizes the expected payoff of (2.26). Since ),( vxEU r  is continuous in x, take the first 

derivative with respect to x at given v  and we obtain 

( )))((1)())((),( 1 rbGxgxb
dx

xdEU
rr

r
−−−= vvvv  

( )))((1/)(
),(
),(

),(
}0,max{)( 1 rbGzg

xD
x

xD
xxbx

rr

r

r
r −−⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−−
− vv

v
v

v
v ργ  

( )dz
rbG

zg
zD
z

zD
xb

r
x r

r

r
r

)(1
)(

),(
),(

),(
)(

1−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ′−
+ ∫

v

vv

v
v

v
ργ .      (A.5) 

(i) Let us first examine the decision problem at Br∈ . Each individual’s optimal symmetric 
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equilibrium bidding strategy must satisfy the first order condition, which equates the derivative 

(A.5) at v=x  with 0. Noting that 0),( =vvrD  for all r, the condition is given by 

v

v

=

=
x

r

dx
xdEU ),(0  

)())(( vvv vgbr ⋅−⇔ 0)(
),(

}0),(max{
),(
)(

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ′−
+ ∫ dzzg

zD
zbz

zD
xb

r
r

ir
r

v
v

v vv
γ .     (A.6) 

It is immediate that a bidding function )(zbz r=  satisfies the equation (A.6), which proves that 

a value revealing bidding strategy generates a symmetric interim equilibrium.  

 To prove the sufficiency part, consider first a bidder whose private value is some value 

V∈v̂ . Suppose that a bidding function )(⋅rb  prescribes him to bid below his own value, 

vv ˆ)ˆ( <rb . If this function constitutes a symmetric equilibrium, this must satisfy (A.6) at v̂=x . 

The first term of the LHS of (A.6) is positive. Noting that 0>γ , 0)( >⋅′rb  and 

}0),(max{ zbz r−−  is either negative or zero for all Vz∈ , no matter what is the shape of )(⋅rb , 

the second term of the LHS of (A.6) is either positive or zero. It follows that the bidding function 

that specifies vv ˆ)ˆ( <rb  for some V∈v̂  can not generate a symmetric interim equilibrium at 

any r. Suppose next that a bidding function )(⋅rb  specifies the bidder to bid over his own value, 

vv ˆ)ˆ( >rb . In order for this function to satisfy the condition (A.6) for this bidder, there must be 

some Vz∈ˆ  such that zzbr ˆ)ˆ( <  so that the second term of the LHS of (A.6) has positive sign. 

If this function generates a symmetric interim equilibrium, the condition (A.6) must hold for 

ẑ=v  at the same time. However, we have already observed that any bidding function that 

prescribes to bid below value for at most one value level can not be a symmetric equilibrium 

strategy. Consequently a bidding function that maps any point in its domain to a different point 

can not generate a symmetric interim equilibrium at any r.    

(ii) The above argument in (i) for each interim equilibrium directly applies to the optimal decision 

problem in the second price auction if we set 0=r . The first order condition for the optimal 

bidding decision in an ascending-bid auction is given by 
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rb(x)
v

v

=
=

=
x

r

dx
xdEU ),(0 . 

This condition is equivalent to (A.6), hence we obtain the same conclusion described in (i) to the 

case of ascending-bid auction as well. n 
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Appendix B: Experiment Instructions (Translation) 
 
Thank you for participating in our experiment. This is a study on auctions. The Ministry of Science 
and Education has provided funds for our research. The instructions are simple. You are being paid 
1,000 yen in cash as start-up money. All you have to do is to make a bid in each of the auction 
situations according to the rules described in this instruction. In each round of auctions, depending 
on the bid you make and the resolution of the uncertainty, you may receive or pay a specified 
amount of money as a result of transaction. 
 
Your acts will be recorded and kept only in terms of purely anonymous data for the academic 
research on microeconomics.  
 
Furthermore, and most importantly, this is not a project to see if you can make a “right” decision, or 
if you can come up with a “correct” answer.  
 

INSTRUCTIONS 
<1> WHAT ARE WE BIDDING FOR? 
We will ask you to bid, not for a commodity as in a real auction market, but for a monetary prize. In 
other words, you are going to compete for the right to earn a monetary prize. In an exchange for the 
prize, a winner has to pay according to the rules of the auction. 
 
At the beginning of each round of auction game, we will assign each of you a number. This 
represents a prize value to you. Once you win the auction, then you will receive the prize worth that 
value number, and you must pay the amount specified by the corresponding auction rules to obtain 
the prize. Your payoff is the difference between the prize and the amount of payment. If you do not 
win, you will not receive any prize and pay nothing, that is, your payoff is zero. 
 

       Your Assigned Prize Value  －  Payment,    if you win, 

   Your Payoff   ＝  

             None,                 if you do not win. 
 
 
You know your prize value for sure once it is assigned to you. But you may or may not know the 
value assigned to the other participants in this experiment, depending on the experimental design.  
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<2> THE AUCTION RULES 
We will run two kinds of auctions. One is a sealed bid auction, called the second-price auction, and 
the other is an open bid auction, called the ascending-bid auction. The experiment starts with a 
session of sealed bid auctions, containing eight rounds of auctions each with fresh value assignment, 
and then proceeds to a session of ascending-bid auctions also containing eight rounds. 
 

(1) THE SECOND-PRICED SEALED BID AUCTION 
Each of you is paired with another anonymous participant. Every auction round starts with the value 
assignment. You and the other participant receive a number each as your prize value, which we call 
“assigned value.” After receiving the assigned value, both of you are asked to make a bid. That is, 
you have to specify a number to submit to the experimenters. We collect those submitted bids, and 
identify a bidder who submitted the higher bid between the two of you, as a winner. The winner 
receives the right to obtain her assigned value. In exchange, the winner has to pay the amount 
equal to the lower bid in the pair, that is, the bid amount the non-winner submitted. Please 
note that the payment required by the winner is not her own bid.  
 
You know that you are paired with someone, but you do not know who is paired with you. There 
are two treatments as to pairing. In one treatment, you are paired with a different person, randomly 
determined, in every round. We call this treatment, “Part 1.” In the other treatment, you are paired 
with a person randomly in a first round, and continue to bid against this same anonymous person in 
the rest of the rounds. We call this treatment “Part 2.” In Part 1, we start with the second price 
auction for eight rounds, and then proceed to “Part 2” for eight rounds. After that, we conduct the 
ascending-bid auction experiments under the treatment of Part 1 and then Part 2. 
 
Upon being instructed to do so, the first thing you have to do is to double click the icon indicated by 
“Sealed Bid” on your windows screen. Then you will see the dialogue window shown below, 
popping up in your screen. 
 
Make sure that you see the header “Sealed Bid” on the left of the dialogue window. Your ID 
number will be shown in a box in the first line of the dialogue window. Do not let the other 
participant know your ID number. This is very important to maintain the academic quality of our 
experiments. And please do not close this window by yourself. Once every necessary step is 
complete, the window will automatically close. 
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SendID Number

Value Assignment 

Your Bid 

Send 
Bid 

Winner’s ID 
Second
Highest
Bid

Comments 

Value Payment Payoff

Send 

 
 

 
Next, the experimenter will send you a private “assigned value,” which will appear in the box of the 
dialogue window labeled “Value Assignment.” In the event you win, this is the prize you are 
entitled to earn by making the appropriate payment. 
 
Only after the assigned values are distributed, the face of the “send bid” button turns black and you 
can then type the amount you decide to bid in the box labeled “Your Bid.” The minimum bid unit 
is 10 yen. If you are sure about that amount, then click the “send bid” button to transmit that 
information to the experimenter. Your bid won’t reach the experimenter unless you click the “send 
bid” button. After all bids are transmitted, the system identifies the bidder whose submitted bid is 
the higher in the pair as a winner, and lets her know that she is the winner.  
 
You will find the winner’s ID number shown in the box labeled “Winner’s ID” in the middle part of 
the dialogue window. The further right box under the header “the second highest bid” will show the 
amount that the winner has to pay, which is the lower bid in the pair. If you are the winner, the 
further left box under the header “payoff” will show the number that is your payoff obtained by 
subtracting the payment from your assigned value. On the other hand, if you are not the winner, the 

Payoff Your Bid Value 

Comments 
Send 
Comment
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number in the box under the “payoff” is zero, since you do not get the prize and do not have to 
make any payment.  
 
For example, consider the case where your assigned value is 400 yen. Suppose that you bid 300 yen, 
and the other participant paired with you bids 350 yen. In this case, you are not the winner since 
your bid is not the highest, and your payoff is zero. 
 
Next, suppose that the other participant paired with you bids 200 yen instead. Your bid, 300 yen, is 
the highest bid and you become the winner. Then you win the prize of 400 yen but must pay 200 
yen, which comes down to the payoff of 200 yen. 

 

  If you win, 
 

  Your Payoff ＝ Assigned Value (¥400) － The Second Highest Bid (¥200)  =  ¥200 

 

    If you do not win, 
 

Your Payoff ＝ ¥0 

 
 
If you and the other participant bid the same amount, then a winner will be randomly selected. In 
this case, you will be a winner with probability of 50%.  
 
In the previous example, suppose that two of you bid 300 yen. Then, you can obtain the prize of 
400 yen and make the payment of 300 yen with probability of 50%, and obtain zero payoff 
otherwise. 
   

Your Payoff ＝  Assigned Value (¥400) － The Second Highest Bid (¥300),  with 50% chance, 

          ¥0,     with 50% chance. 

 
In the very bottom of the dialogue window, you find the “comments” box. Please type why and how 
you have come to a bid decision, when we, the experimenters, ask you to do so. Having finished 
typing your comments, click the “send comments” button. Your comments won’t be sent to the 
experimenters unless you click the “send comments” button. 
 
(2) THE ASCENDING-BID AUCTION 
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In the ascending-bid auction, we, the experimenters, raise a price gradually from a very low level. 
At the beginning of the ascending-bid auction, all of you are “active” in the sense that you are 
bidding at that price level. Unless you indicate that you wish to withdraw from bidding, you are 
considered being active and willing to pay that amount of indicated price in the event that you 
become the winner at this very moment. As long as two of you are active, we continue to raise the 
price. At the moment when one bidder withdraws from bidding, then the remaining bidder becomes 
the winner awarded with the prize, and she has to pay the last price level at which two bidders were 
active.  

 

After you double click the icon named “Ascending Bid” on your screen, you will see the following 
dialogue window.  

 
 
Please make sure that your ID number is shown in the box located at the top of the dialogue 
window. DO NOT let the other participants know of your ID. 
 
Similar to the experiment of the second-price sealed bid auction, you will see your assigned value 
pop up in the corresponding box. If you become a winner, this is the amount you will get as a prize. 

ID number Send Max 

Min 

Current Price 

Assigned 
Value 

Your Bid 

Drop 

Payoff Value Bid Price Winner Payment 

Comments 

Send 
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Underneath that box, there is a box indicating the “current price”. Once the auction starts, the 
number shown in that box rises gradually from 0 yen. As the number increases, the price 
thermometer on the left of the dialogue window grows higher. The price increases by 10 yen. 
 
Let us consider the case where the number in the “current price” box is 100. Suppose that you are 
willing to pay 100 yen if you win at this moment, but you would not want to pay more than 100 yen. 
In this case, click the “Drop” button to indicate that you wish to withdraw from bidding when 
the number in the “current price” box gets up to 110. Your withdrawal bid level will be 
recorded as 100. Unless you click the “Drop” button, your wish to withdraw would not be 
transmitted to the experimenter. 
 
As long as the “current price” increases, the other participant paired with you is active. When one of 
the pair drops, the process of the ascending-bid auction stops. If the price stops increasing before 
you click the “Drop” button, this means that you win. Then, you will obtain the prize worth your 
assigned value, and your payment is 100 yen, which is one unit (=10 yen) lower than the price level 
at which the process stops. The payment amount will be indicated in the “payment” box. The ID 
number of the winner will be shown in the “winner” box. Your payoff will be indicated under the 
large box in the middle under the header of “payoff.” If you win, your payoff is your prize minus 
the payment. If you do not win, your payoff is zero. Such information will be listed in that box in 
each round. Each new result enters at the top of the list. 
 
Let us review the above details by some examples. Suppose that your assigned value is 400 yen. 
Suppose that the number in the “current price” box increases and stops at 350 before you click the 
“drop” button. This means that you win, and your payment is one step earlier than the 350 level, 
which is 340 yen. Your payoff is 400 minus 340, which is 60 yen.  
 

  Your Payoff ＝  Your Assigned Value (400) － Price before the Stop (340) ＝ 60 

 

Suppose that you click the “drop” button at 360. It means that you do not win, and your payoff is 
zero. 
 
When two of you simultaneously click the “drop” button, then a winner will be randomly selected, 
and the winner pays the price at the moment of withdrawal minus 10. 
 
At the bottom of the dialogue window, there is the “comments” box. Describe why and how you 
figure out the amount of price at which you choose to withdraw, when instructed to do so. To 
transmit your comments to the experimenter, click the “send” button. 
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<3> THE EXPERIMENT PROCEDURE  
After you sit down in front of the computer terminal, each of you will be given ID number, which 
you continue to use during the full course of experiment. Do not show that number to any other 
participant. It is very important for the academic quality of this experiment that you keep your ID 
number completely private. 
 
(1) PAIRING 
Having mentioned elsewhere, you are paired with another person among those participants in this 
room. You will never be told with whom you are paired. In Part 1, the person you paired with will 
be determined randomly every round of the auction, while in Part 2, your paired person will be 
determined randomly in the first round, and maintained the same anonymous person through out all 
rounds.  
 
(2)VALUE ASSIGNMENT 
There are two ways in which your value is assigned in a round. In one case, which we call 
“treatment VA1,” your value is selected randomly from a predetermined set of values, which 
consists of 700 and 800, every round. Your computer screen informs you of your own value only, 
but if you receive 700, it automatically implies that your paired participant receives 800, and vice 
versa. 
 
In the other case, which we call “treatment VA2,” your value is a purely random variable from a 
predetermined range of value of [500, 800] with uniform distribution. In every round, a fresh value 
is drawn independently. Again, you are informed of your own value only, and never be informed of 
the realized value drawn for your paired person. But the same random procedure is applied to both 
of you and your paired person, independently. 
 
In order to get familiar with the auction rules, the first four rounds are for your practice. The 
outcomes from the subsequent rounds are recorded for real prize and payment. 
 
Please make sure that you fully understand the rules and procedure. You will be given a short quiz 
after all the instruction is completed.  
 
(3) HOW TO USE PAYOFF TABLE  
Your payoff is a joint product of your own bid choice and a bid chosen by the other participant 
paired with you. The other participant’s payoff is also a joint product. Though there are numerous 
combinations of your bid and the other participant’s bid, in the treatment VA1, we provide you a 
payoff table that looks like the figure shown below. The table lists your payoffs and the other 
participant’s payoffs under the various but limited number of bid combinations, because of the 
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space limit. 
 
 
The figure below shows the example of the payoff table with your assigned value being 350 yen 
and the other participant’s being 400 yen. The further left column lists the possible bids you can 
choose, and the first row lists the bids available for your paired person. Though those possible bids 
are listed with 50 yen increments, you are free to bid in 10 yen increments in the auction. 
 
There are two numbers shown in each cell. The number in the upper left of the cell is your payoff 
and the number in the lower right of the cell is the other participant’s payoff. 
 
For example, suppose that your bid is 350 yen and the other participant bids at 300 yen. Then, your 
bid is higher and you are the winner. You will be awarded 350 yen prize, your assigned value, and 
you have to pay 300 yen, the other participant’s bid level, so that your net payoff is 50. The other 
participant who loses receives zero net payoff. 
 

    Your Assigned Value Your Paired Person’s Assigned Value 

      350       400 

 
Let us consider another case. Suppose that you bid 350 yen and the other participant bids 400 yen. 

0 

0 

0 

0 

250 
 

300 

Your Paired Person’s Bid Alternatives 

350 

400 

300 

25 

50 

50 

0 

Your Payoff 

Your Bid 
Alternatives 

Your paired person’s  
Payoff 

0 
0 

350 

0 
50 

0 When your bid coincides with your opponent’s 

bid, for example 300 yen，then you will receive 

50 yen payoff with 50% chance. The number 25 

350 400 

0 

50 
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Since her bid is higher, she is the winner and gets 400 yen prize and pays 350 yen equal to your bid. 
Her net payoff is 50, subtracting 350 from 400, which is shown in the lower right of the cell in the 
row of your 350 bid and the column of the other participant’s bid 400. 
 
Another important case is the event of tie. Suppose that you bid 300 yen and the other participant 
bids also 300 yen. Then the winner will be randomly selected. That is, you become the winner with 
50% chance, receiving your value prize of 350 yen and paying 300 yen. Your net payoff is 50 yen 
in when you win, and your expected payoff is 25 yen, which is shown in the upper left of the 
corresponding cell. Since the other participant’s assigned value is 400 yen, her expected payoff is 
50=0.5*(400-300), which is shown in the lower right of the corresponding cell. 
 
 
<4> THE SUMMARY OF THE COURSE OF THE EXPERIMENTS 
 
There are two parts regarding paring; Part 1 is the treatment where you are paired with a randomly 
selected person among other participants every round. Part 2 is the treatment where you are paired 
with a randomly selected person in the first round and maintain the same person in the rest of the 
rounds. 
 
There are two treatments regarding value assignment. In treatment VA1, you are assigned either 
700 or 800 yen randomly, and in treatment VA2, you are assigned with a random number drawn 
from the range between 500 and 800 yen according to the uniform distribution. Each draw is 
independent. 
 
There are two types of auctions; one is the second-price sealed bid auction and the other is the 
ascending-bid auction, and the sealed bid auction precedes the ascending bid auction.  
 
As a total, there are 2x2x2 variations in our experimental treatments. We will run on average 8 
rounds for each treatment. At the beginning of the first sealed-bid auction experiment, there are four 
rounds set as the practice session. All payoffs generated during the practice session will not be 
counted. After completing the practice rounds, then we move on to the first set of 8 rounds of 
auction and start recording the realized payoffs.   

 

Your payoffs will be all recorded. At the end of the experimental session, we will pay you the 
cumulative amount in cash, on the spot.  
 
<5> NOW, WE ARE READY TO START. 
Please read this instruction carefully. It is very important that you understand these instructions. 
Should you have any questions, please feel free to ask us.  
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We would like you to leave this room after the experiment with as much money as possible. 
 
Once we start explaining the instructions, you are not allowed to talk to any other participants. You 
can only talk to us, the experimenters, if necessary. You are not allowed to look at the other 
participants’ PC screens. This no talking and no peeking code is very important for the validity of 
our experiments. Not conforming to this code would jeopardize the quality of our experiments.  
 
 
 




