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Abstract

We examine a voluntary participation problem in public good provision when each
agent has a demand level for a public good. The demand level of an agent for a public
good is the minimum level of the public good from which she can receive a positive
benefit. We show that in the voluntary participation game, the efficient level of the
public good is provided at a subgame perfect Nash equilibrium. We also show that
there is a subgame perfect Nash equilibrium with efficient provision of the public good
that is robust against coordination, as modeled through a strong perfect equilibrium in-
troduced by Rubinstein (1980), and only the efficient subgame perfect Nash equilibrium
is supported at the strong perfect equilibrium if every agent has only one demand level.
If every agent has more than one threshold, then only the inefficient allocation may be
attained at subgame perfect Nash equilibria of the voluntary participation game.
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1 Introduction

We examine a voluntary participation problem in (pure) public good provision when agents

want different “at least” levels of the public good. A typical example of the problem is as

follows: consider a situation in which there is a metropolis and three cities (A, B, C). City

A is nearest to the metropolis, B is the second nearest, and C is the farthest. The mayors

of these three cities want to connect their cities with the metropolis by roads, and plan to

construct roads to the metropolis jointly. They are assumed to be able to construct roads in

the following three segments: from the metropolis to city A (segment 1), from city A to city

B (segment 2), and from city B to city C (segment 3). The mayor of each city is satisfied only

if her city is connected to the metropolis by roads. Thus, the mayor of cities A, B, and C are

satisfied only if roads are built in, at least, segment 1, segments 1 and 2, and all segments,

respectively. They all demand different “at least” lengths of the roads. The problem we

consider is whether the roads are constructed efficiently in a situation in which they are public

goods and participation in the joint project is not coercive. If the roads are public goods,

a city can benefit from them at no cost by not participating if others build them at a level

with which the city is satisfied. Therefore, there is the possibility that some city does not

participate, so that the roads are set inefficiently.

Several researchers have studied the voluntary participation problem and have pointed out

the seriousness of the problem by analyzing a voluntary participation game. This game

consists of two stages: in the first stage, all agents decide whether to participate in the joint

production of the public good. In the second stage, knowing who participates, the participants

decide the level of the public good and distribute the cost of the public good according to

some non-cooperative game (e.g. efficient public good mechanisms such as those of Groves

and Ledyard (1977) and Walker (1981) or the contribution game of Bergstrom et al (1986)).

If an agent chooses not to participate, she can free-ride. Saijo and Yamato (1999) study the

participation game when there is one perfectly divisible public good and one perfectly divisible
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private good and all agents have the same Cobb-Douglas utility function and the same initial

endowment of the private good. They prove that the participation of all agents is less likely

to be supported at an equilibrium as the number of agents in the economy increases. As a

result, the equilibrium allocation is seldom Pareto-efficient.1 The same applies to the case in

which agents have other preference relations as Healy (2010), Furusawa and Konishi (2011),

and Konishi and Shinohara (2012) show.2

These studies assume that agents have continuous and monotone preferences. Hence, the

benefit of agents from the public good increases continuously and monotonically. However,

in the real world, as in the previous example of building roads, there may be a situation

in which each agent has a demand level for the public good and she can only enjoy a large

benefit if her demand level is fulfilled: the benefit of agents increases discontinuously at the

level she wants. The cooperative construction of an irrigation ditch has a structure similar to

that of road construction. In the global warming problem, the benefit to each country from

the abatement of greenhouse gases may increase discontinuously at some level of abatement.

Environment-conscious countries want to reduce greenhouse gasses substantially worldwide,

and their demand levels for the abatement are very large.3 In contrast, countries that are

less concerned about global warming are satisfied with a small reduction of greenhouse gasses.

By investigating how such a discontinuous jump in benefits affects participation behavior,

we reexamine the seriousness of the voluntary participation problem from the viewpoint of

allocative efficiency.

The benefit structure we introduce is as follows: let i be an agent. Let Yi > 0 be the

threshold level of the public good such that i gains θi > 0 if and only if Yi or more units of

1 Saijo and Yamato (2010) extend their result to a case in which agents have asymmetric Cobb-Douglas
preferences.

2 Shinohara (2009) obtains a similar negative result in the case in which a public good is discrete. He
shows that if the level of the public good is provided in integer units and the participation of many
agents is needed for the efficient provision of the public good, the equilibrium level of the public good is
inefficient.

3 Island countries such as the Republic of Maldives and Tuvalu are examples of countries with have high
demand levels for the reduction of greenhouse gasses since they are vulnerable to the rise in sea levels
caused by global warming and do not benefit from a small abatement.
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the public good are produced. We call Yi the demand level of i.

In this paper, we assume that the participants play the (simultaneous) contribution game

of Branzei et al (2005) in the second stage of the voluntary participation game. One of

the merits of the contribution game is that the allocation that maximizes the total surplus

of the participants is supported at a Nash equilibrium of the game. We call the allocation

maximizing the total surplus of a set of participants a group efficient (GE) allocation for the

set. The GE allocation for the whole set of agents is a Pareto efficient allocation. Thus, by

setting the Branzei et al. (2005) game as the second stage, we can guarantee that some set of

participants (for example, the whole set of agents) can produce the Pareto efficient allocation

in the voluntary participation game. 4

We first analyze the subgame perfect Nash equilibrium of the voluntary participation game.

We first show that for each set of participants, there is a Nash equilibrium in the second-stage

game that supports the allocation satisfying GE, individual rationality (IR), and positive cost

share (PCS) for the set of participants.5 As a backward induction hypothesis, we assume

that each set of participants selects a Nash equilibrium satisfying these three conditions.

Next, we investigate the first-stage game induced by the induction hypothesis. We show

that in the induced first-stage game, there is a Nash equilibrium that supports the Pareto

efficient allocation. The set of participants supported at the Nash equilibrium is inductively

constructed so that if each participant chooses not to participate, her demand level is not

fulfilled. In conclusion, in the voluntary participation game, under the benefit structure, there

is a subgame perfect Nash equilibrium that achieves Pareto efficiency. We also point out that

the public good may be provided Pareto inefficiently at a subgame perfect Nash equilibrium.

Second, we ask whether the possibility of coordination among agents resolves the multiplicity

4 Trivially, if no set of participants can achieve Pareto efficiency, the voluntary participation game, even
in our case, has no subgame perfect Nash equilibrium that produces the Pareto efficient allocation. Saijo
and Yamato (1999, 2010) also impose a similar condition on the second-stage game since they set the
mechanism that implements the Lindahl allocation as the second stage game. Clearly, in their game, the
mechanism provides the Lindahl allocation for each set of participants.

5 See Definition 1 for the precise definitions of IR and PCS for a set of participants.
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of equilibria. We examine a strong perfect equilibrium introduced by Rubinstein (1980).

The strong perfect equilibrium is an equilibrium concept for extensive-form games and is

immune to unilateral deviation as well as coalitional deviations. Therefore, each strong perfect

equilibrium is a subgame perfect Nash equilibrium, but the converse is not true. We show

that in the voluntary participation game, (i) a strong perfect equilibrium exists and (ii) only

the subgame perfect Nash equilibrium that produces the Pareto efficient allocation is strongly

perfect. Thus, coordination modeled through the strong perfect equilibrium leads only to the

efficient provision of the public good.

Finally, as an extension of the analysis above, we investigate the case in which the benefit

of each agent has jumps at multiple thresholds. We provide examples and show that the

voluntary participation game does not necessarily have a subgame perfect Nash equilibrium

that produces the Pareto efficient allocation.

Our results imply that whether the allocative efficiency is achieved at an equilibrium depends

on the number of thresholds that an agent has. As is shown above, when each agent has

only one demand level, the efficient provision of the public good is attained at a subgame

perfect Nash equilibrium and only the subgame perfect Nash equilibrium with the Pareto

efficient allocation can be achieved through coordination. Therefore, in this case, the voluntary

participation problem is not as serious as earlier studies report. However, if an agent has more

than one threshold, then the result seems to be similar to the results of the earlier studies:

that is, only the inefficient allocation is attained at equilibria.

Related literature other than Saijo and Yamato (1999) and their followers

The voluntary participation game with a public project is also related to this paper. This

game is the same as that of Saijo and Yamato (1999), but in the game with a public project,

the level of the public good is binary: it is a positive and fixed level (for example one, or zero).

Palfrey and Rosenthal (1984), Dixit and Oslon (2000), and Shinohara (2007, 2009) examine

this game. Their models are slightly different, but they have a common feature: the positive
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level of the public good is produced if and only if a certain number of agents participate

in public good provision. All of their games have an equilibrium at which the public good

is provided Pareto efficiently. Our model substantially generalizes their games. The game of

Shinohara (2007, 2009) corresponds to our game in the case in which every agent has the same

demand level. In addition, if every agent receives the same benefit from the public good, our

game is the same as the games of Palfrey and Rosenthal (1984) and Dixit and Olson (2000).

The existence of efficient equilibria is also generalized by our research.

The airport game, which is a classical game in cooperative game theory (Littlechild and

Owen, 1973), is relevant to this paper. This game examines the method of cost sharing in

maintaining a fixed-length runway among airlines. Each airline demands a different length of

runway; for example, one airline may want a half-length of runway, while another may need

the full length. The Baker-Thompson rule is the typical of cost sharing, and many studies

have characterized it by using the core, the Shapley value, and the nucleolus. Moulin (1994)

examines an incentive aspect of cost sharing for the Baker-Thompson rule. Branzei et al

(2005) examine an enterprise game, which is an extension of the airport game in the sense

that the length of the runway is a player choice variable. The airport problem may appear

to treat a situation similar to ours, since players have demand levels. However, our game is

basically different because in the airport game, non-contributors are excluded from the usage

of runways, while in our setting, such an exclusion is impossible. With the exclusion assumed

in the airport game, it is easy to induce each agent to participate in sharing the cost of the

runway. In fact, Branzei et al. (2005) show the existence of a core in the enterprise game.

The core is individually rational and no group of players can block the core. Thus, all agents

voluntarily participate in the same (excludable) project and no group of agents deviates and

starts another new project. The reason we need examine the participation problem is because

of the non-excludability of a public good, as mentioned before.

Branzei et al (2005) provide a simple non-cooperative contribution mechanism that imple-

ments the core of the enterprise game at strong Nash equilibria. Thus, their mechanism shows
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a good performance in implementing an excludable project. Our results show that it also

works well in a project without exclusion. In the voluntary participation game, agents can

commit to free-ride the public good by not participating. Even in such a situation, sufficiently

many agents voluntarily participate in the contribution game of Branzei et al (2005), and

participants produce the public good Pareto efficiently at a subgame perfect Nash equilibrium

of the voluntary participation game. Therefore, we conclude that the mechanism of Branzei

et al (2005) achieves a Pareto efficient allocation irrespective of whether exclusion is possible.

The paper is organized as follows: in Sections 2 and 3, we introduce the model and equilib-

rium concepts. In Section 4, we examine the equilibrium outcomes of the contribution game.

In Section 5, we provide the basic properties of the voluntary participation game. In Section

6, we provide an analysis of the subgame perfect Nash equilibrium; in Section 7, we provide

an analysis of the strong perfect Nash equilibrium. In Section 8, we provide an extension.

Section 9 concludes the paper.

2 The model

Consider an economy in which there is one private and one public good. The level of the

public good can be any non-negative real number. For each y ≥ 0, c(y) is the amount of

the private good required to produce y units of the public good. We assume that c(·) is an

increasing function and c(0) = 0.

Let N = {1, 2, . . . , n} with n ≥ 2 be the set of agents. When y and xi ≥ 0 represent the

level of the public good and the contribution to public good production from agent i ∈ N ,

respectively, agent i’s payoff is given by Vi(y, xi) = Bi(y) − xi. Function Bi(·) is a benefit

function of i ∈ N and is as follows:

Bi(y) =

{
θi > 0 if y ≥ Yi

0 otherwise.
(1)

Agent i ∈ N has a demand level for the public good, which is denoted by Yi > 0. Equation

(1) means that i’s benefit from y units of the public good is θi > 0 if her demand is fulfilled,
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and zero otherwise.

The set of demand levels is denoted by Y ≡ {y1, . . . , yt} with 1 ≤ t ≤ n. Without loss of

generality, suppose that y1 < · · · < yt. Define N(y) ≡ {i ∈ N |Yi = y} for each y ∈ Y. Then,

{N(y)}y∈Y is a partition of N . Let N (y′, y′′] ≡
∪
y: y′<y≤y′′ N(y) for each pair y′, y′′ ∈ {0}∪Y

such that y′ < y′′.

Let (y∗, (x∗i )i∈N ) ∈ [{0} ∪ Y] × Rn+ denote a (Pareto) efficient allocation. Total surplus∑
i∈N Bi(y)− c(y) is maximized at y∗ and

∑
j∈N x

∗
j = c(y∗). We assume that∑

i∈N

Bi(y)− c(y) > 0 for some y ∈ Y, (2)

so that y∗ > 0 and
∑
i∈N Bi(y

∗)− c(y∗) > 0.

We consider a situation in which there exists an opportunity for the joint production of the

public good. Each agent can decide whether to participate in the production. We consider

the following two-stage game. In the first stage, agents simultaneously decide whether to

participate (participation stage). In the second stage, knowing the other agents’ participation

decisions, the agents who chose to participate jointly produce the public good and distribute

its cost (public good provision stage). The agents who do not participate can free-ride the

public good.

The participation stage

In the first stage, each agent chooses 0 (not participating) or 1 (participating). Let {0, 1} be

the set of actions for each agent in the first stage.

The contribution stage

We model the second-stage game as the contribution game of Branzei et al. (2005). The

Branzei et al. game is a simultaneous game with complete information. Each participant

chooses a vector of marginal contributions to each possible increase of the public good provision

from 0 to y1, from y1 to y2, . . ., and from yt−1 to yt. Let P ⊆ N be a set of participants. For

each yl ∈ Y and each i ∈ P , let xi(y
l) ∈ R+ be a marginal contribution of i to the increase

from yl−1 to yl. Denote xi = (xi(y))y∈Y ∈ Rt+ by a marginal contribution vector announced

8



by i ∈ P . Let xP = (xi)i∈P ∈ Rt|P |
+ .

The level of the public good is determined as follows: the public good of yl ∈ Y units is

provided as long as the aggregate marginal contribution
∑
i∈P xi(y

l) covers the incremental

cost c(yl) − c(yl−1). If
∑
i∈P xi(y

k) < c(yk) − c(yk−1) for some yk ∈ Y, then the incremen-

tal provision from yk−1 to yk is not realized and also not the higher incremental provision.

Formally, given xP ∈ Rt|P |
+ , the level of the public good is given by

ψ(xP ) ≡ max

{
yl ∈ Y|

∑
i∈P

xi(y
k) ≥ c(yk)− c(yk−1) for each yk such that yk ≤ yl

}
.

Participants never get money back, whether the aggregate marginal contribution to an incre-

mental provision is insufficient or exceeds the incremental cost. Participant i’s payoff at xP

is Vi

(
ψ(xP ),

∑
y∈Y xi(y)

)
= Bi(ψ(xP ))−

∑
y∈Y xi(y). For each i ∈ P and each xP ∈ Rt|P |

+ ,

denote πi(xP ) ≡ Vi

(
ψ(xP ),

∑
y∈Y xi(y)

)
. Even if a participant contributes nothing, she

benefits from the public good if her demand is fulfilled. The formulation of the second stage

is common to every set of participants.

Strategies

The set of strategies of i ∈ N , denoted by Si, is Si ≡ {0, 1} × {γi : {P ⊆ N | i ∈ P} → Rt+}.

Set {0, 1} is the set of first stage actions. What i announces in the second stage depends on

who participates in the contribution game. Hence, the second-stage strategy is a function that

corresponds a marginal contribution vector with a set of participants. We define S1
i ≡ {0, 1}

and S2
i ≡ {γi : {P ⊆ N | i ∈ P} → Rt+}. We denote a typical element in Si by si = (s1i , γi)

such that s1i ∈ S1
i and γi ∈ S2

i . We denote S ≡
∏
i∈N Si, Sj ≡

∏
i∈N S

j
i for each j ∈ {1, 2}.

For each P ⊆ N , each i ∈ P , each z such that yz ∈ Y, and each γi ∈ S2
i , γ

z
i (P ) ∈ R+

represents a marginal contribution from i to the increase of the public good from yz−1 to yz

when P is a set of participants.

Payoffs

Let s ∈ S be a strategy profile. Denote P (s) ≡ {i ∈ N | s1i = 1} (the set of participants

at s). At s, i ∈ N obtains Ui(s) ≡ Vi(ψ((γi(P (s)))i∈P ),
∑t
z=1 γ

z
i (P (s))) if i ∈ P (s) and
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Ui(s) ≡ Vi(ψ((γi(P (s)))i∈P ), 0) otherwise.

The voluntary participation game is a list Γ = [N,S, (Ui)i∈N ].

3 Equilibrium concepts

We adopt two equilibrium concepts. One is a subgame perfect Nash equilibrium, which

is the standard equilibrium notion for multi-stage games; the other is a strong perfect

equilibrium, which is introduced by Rubinstein (1980). The strong perfect equilibrium is an

extension of a strong Nash equilibrium (Aumann, 1959) to multi-stage games and is immune

to all possible coalitional deviations.

A strategy profile s ∈ S is a subgame perfect Nash equilibrium if s assigns a Nash

equilibrium for each subgame: (γi(P ))i∈P is a Nash equilibrium of the contribution game for

each P ⊆ N and s is a Nash equilibrium of the whole game. We call a subgame perfect Nash

equilibrium that provides the efficient (inefficient) level of a public good on the equilibrium

path an efficient (inefficient, respectively) subgame perfect Nash equilibrium.

For each D ⊆ N , let −D = N\D. For each D ⊆ N , xD ∈ Rt|D|
+ denotes a profile of the

marginal contribution vectors of D and sD ∈
∏
i∈D Si denotes a profile of the strategies of D.

For notational simplicity, denote x = xN ∈ Rtn+ and s = sN ∈ S.

The strong Nash equilibrium is a Nash equilibrium that is immune to all coalitional devia-

tions. Let P ⊆ N . A marginal contribution vector xP ∈ Rt|P |
+ is a strong Nash equilibrium of

the contribution game when P is the set of participants if there are no D ⊆ P and x′
D ∈ Rt|D|

+

such that πi(x
′
D,xP\D) > πi(xP ) for each i ∈ D.

We next define the strong perfect equilibrium. Profile s ∈ S is a strong Nash equilibrium

of Γ if there are no D ⊆ N and s′D ∈
∏
i∈D Si such that Ui(s

′
D, s−D) > Ui(s) for each i ∈ D.

Profile s ∈ S is a strong perfect equilibrium of Γ if it assigns a strong Nash equilibrium

for each subgame: (γi(P ))i∈P is a strong Nash equilibrium of the contribution game for each

P ⊆ N and s is a strong Nash equilibrium of the whole game.

The strong perfect equilibrium is stable against coordination among agents within and across
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stages. Clearly, every strong perfect equilibrium is a subgame perfect Nash equilibrium and

the converse is not true.

We focus on the case in which agents use only the pure strategies.

4 Equilibrium analysis of the second stage

The contribution game has many Nash equilibria. Some equilibria are efficient with respect to

the participants’ preferences, while others are not. We investigate a strong Nash equilibrium.

Lemma 1 presents a necessary condition for a Nash equilibrium of the second-stage game.

Lemma 1 Let P ⊆ N . Let xP ∈ Rt|P |
+ be a marginal contribution vector at a Nash equilib-

rium of the contribution game. Then, (i) xi(y) = 0 for each i ∈ P such that Yi > ψ(xP ) and

each y ∈ Y, (ii) xi(y) = 0 for each i ∈ P ∩N (0, ψ(xP )] and each y ∈ Y such that y > Yi, and

(iii) ψ(xP ) ≤ y, where y ≡ max
{
argmaxy∈Y

∑
i∈P Bi(y)− c(y)

}
.

Proof. (i) Suppose that xi(y) > 0 for some i ∈ P such that Yi > ψ(xP ) and some y ∈ Y.

Then, i obtains the payoff −
∑t
z=1 xi(y

z) < 0. If she reduces her contribution, then she is

made better off.

(ii) Suppose that xi(y
l) > 0 for some i ∈ P∩N (0, ψ(xP )] and some yl ∈ Y such that yl > Yi.

Let x′
i = (x′i(y))y∈Y be such that x′i(y

l) = 0 and x′i(y) = xi(y) for each y ∈ Y\{yl}. We first

consider the case of ψ(xP ) < yl. In this case, by the definition of ψ, ψ(xP ) = ψ(x′
i,xP\{i}).

Thus, πi(xP ) = θi−
∑t
z=1 xi(y

z) < θi−
∑t
z=1 x

′
i(y

z) = πi(x
′
i,xP\{i}), which implies that xP

is not a Nash equilibrium. We also consider the case of ψ(xP ) ≥ yl. If i switches from xi to

x′
i, y

l may not be provided. By the construction of x′
i and the definition of ψ, ψ(x′

i,xP\{i}) ≥

yl−1. Since yl > Yi and Y is discrete, then yl−1 ≥ Yi. Then, ψ(x′
i,xP\{i}) ≥ Yi. Thus, i

can switch from xi to x′
i in such a way that her demand level is fulfilled and her contribution

declines.

(iii) Suppose that ψ(xP ) > y. Clearly, ψ(xP ) /∈ argmaxy∈Y
∑
i∈P Bi(y) − c(y). Then,∑

j∈P∩N (y,ψ(xP )] θj < c(ψ(xP ))− c(y). By (i) and (ii), agents in P ∩N (y, ψ(xP )] contribute
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c(ψ(xP ))− c(y). They may also contribute the provision of a lower level of the public good.

Thus,
∑
j∈P∩N (y,ψ(xP )]

∑
y∈Y xj(y) ≥ c(ψ(xP )) − c(y), which implies that there exists i ∈

P ∩ N (y, ψ(xP )] such that θi −
∑
y∈Y xi(y) < 0. Since θi > 0, then

∑
y∈Y xi(y) > 0. If an

agent’s total contribution is zero, then her payoff is at least zero and she is made better off.

This contradicts the idea that xP is a Nash equilibrium. �

Let P ⊆ N . Let yl ∈ argmaxy∈Y
∑
j∈P Bj(y)− c(y). Let us set xP ∈ Rt|P |

+ as follows:

(a) For each i ∈ P such that Yi > yl and each y ∈ Y, xi(y) = 0. For each i ∈ P ∩ N (0, yl]

and each y ∈ Y such that y > Yi, xi(y) = 0.

(b) For each k ∈ {1, . . . , l} such that yk ∈ Y,

∑
j∈P∩N (yk−1,yl]

xj(y
k) = c(yk)− c(yk−1) (3)

and θi −
l∑

z=k

xi(y
z) ≥ 0 for each i ∈ P ∩N (yk−1, yl]. (4)

(c) For each i ∈ P ∩N (0, yl],
∑l
z=1 xi(y

z) > 0.

Property (a) is based on Lemma 1. In (b), (3) means that the budget balance condition

holds for each increase of the public good up to yl and (4) means that the payment of each

participant does not outweigh her benefit. Property (c) means that each participant whose

demand level is fulfilled pays a positive fee.

Lemma 2 shows that we can construct such an xP .

Lemma 2 There is a vector of marginal contributions that satisfies (a), (b), and (c).

Proof. Clearly, we can take a marginal contribution vector that satisfies (a). We show the

existence of the vector that satisfies (b) by induction. First, we consider the case of k = l.

Since yl maximizes
∑
j∈P Bj(y)− c(y), then

∑
j∈P∩N (yl−1,yl] θj ≥ c(yl)− c(yl−1). Hence, we

can take (xi(y
l))i∈P∩N (yl−1,yl] that satisfies (3) and (4) for k = l. Let k ≤ l−1 and we assume
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as an induction hypothesis that (3) and (4) hold for each number greater than k. We show

that (3) and (4) also hold for k. Since yl maximizes
∑
j∈P Bj(y)− c(y),∑

j∈P∩N (yk−1,yl]

θj ≥ c(yl)− c(yk−1). (5)

By (5), ∑
j∈P∩N (yk,yl]

θj − (c(yl)− c(yk)) +
∑

j∈P∩N(yk)

θj ≥ c(yk)− c(yk−1).

By the induction hypothesis, c(yl)− c(yk) =
∑
j∈P∩N (yk,yl]

∑l
z=k+1 xj(y

z). Hence,

∑
j∈P∩N (yk,yl]

[
θj −

l∑
z=k+1

xj(y
z)

]
+

∑
j∈P∩N(yk)

θj ≥ c(yk)− c(yk−1).

Since θj −
∑l
z=k+1 xj(y

z) ≥ 0 for each j ∈ P ∩ N (yk, yl], we can take xi(y
k) for each i ∈

P ∩N (yk−1, yl] that satisfies (3) and (4).

If
∑l
z=1 xi(y

z) = 0 for some agent i ∈ P ∩N (0, yl], then there is j ∈ P ∩N (0, yl]\{i} such

that xj(y
z) > 0 for some yz ≤ Yi. If we reduce the contribution of j slightly and add this

amount to i’s contribution, then i’s contribution is positive. Hence, we can construct a profile

of marginal contribution vectors in a way that satisfies (c), in addition to (a) and (b). �

Note that yl units of the public good are provided at this marginal contribution vector.

We introduce several properties of the second-stage outcome.

Definition 1 Let P ⊆ N . Let (y, (
∑
y∈Y xi(y))i∈P ) be a second-stage outcome.

(1.1) (y, (
∑
y∈Y xi(y))i∈P ) satisfies group efficiency (GE) for P if

y ∈ argmaxy∈Y
∑
i∈P Bi(y)− c(y) and

∑
i∈P

∑
y∈Y xi(y) = c(y).

(1.2) (y, (
∑
y∈Y xi(y))i∈P ) satisfies individual rationality (IR) for P if Bi(y) ≥

∑
y∈Y xi(y)

for each i ∈ P .

(1.3) (
∑
y∈Y xi(y))i∈P satisfies positive cost share (PCS) for P if

∑
y∈Y xi(y) > 0 for each

i ∈ P ∩N (0, y].

GE requires that a set of participants produce the public good in a way that maximizes the
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aggregate surplus of participants and satisfies budget balance. The outcome that satisfies GE

is Pareto efficient with respect to the participants’ preferences. IR requires that the benefit

from the public good should not be less than the aggregate contribution. PCS requires that

each participant whose demand level is fulfilled should pay a positive fee. IR and PCS imply

that for each P ⊆ N and each i ∈ P , i pays a positive fee if and only if i’s demand level is

fulfilled. The following summarizes the properties of vectors with (a), (b), and (c).

Lemma 3 Let P ⊆ N . Let xP ∈ Rt|P |
+ be a marginal contribution vector that satisfies (a),

(b), and (c). Then, the allocation at xP satisfies GE, IR, and PCS.

A profile of marginal contribution vectors that satisfies (a) and (b) is robust to coalitional

deviations.6

Lemma 4 For each P ⊆ N , xP satisfying (a) and (b) is a strong Nash equilibrium in the

contribution game.

Proof. Trivially, xP is a Nash equilibrium because no i ∈ P is made better off by increasing

or decreasing her contribution. Suppose, to the contrary, that there is a coalition D ⊆ P

and its deviation x′
D ∈ Rt|D|

+ that improve each i ∈ D’s payoff. Denote x′
P = (x′

D,xP\D)

and yk = ψ(x′
P ). Since

∑
j∈P Bj(y

l) − c(yl) ≥
∑
j∈P Bj(y) − c(y) for each y > yl, then∑

j∈P∩N (yl,y] θj ≤ c(y) − c(yl). Hence, if yk > yl, then no member of D is made better

off. If yk < yl, then c(yk+1) − c(yk) >
∑
j∈P x

′
j(y

k+1). Recall that xi(y
k+1) > 0 only if

i ∈ N (yk, yl]∩P . Hence, N (yk, yl]∩D 6= ∅ and every i ∈ N (yk, yl]∩D obtains θi−
∑l
z=1 xi(y

z)

before the deviation and −
∑l
z=1 x

′
i(y

z) after the deviation. By (4), θi −
∑l
z=1 xi(y

z) ≥

−
∑l
z=1 x

′
i(y

z), which is a contradiction. �

6 Property (c) is not necessary for the marginal contribution vectors to be strong Nash equilibria. However,
it saves several steps in the proof of Lemma 8. Without it, we can show the lemma, but the proof is
involved.
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5 The participation game induced from the second-stage outcome

In the contribution game, multiple strong Nash equilibria exist in general. The payoff alloca-

tions at the strong Nash equilibria are also multiple. We assume that each set of participants

P ⊆ N chooses one of the strong Nash equilibria whose allocation satisfy GE, IR, and PCS

in the corresponding contribution game and that each agent has the same prediction of which

strong Nash equilibrium is played.

Let (γi)i∈N be such that (γi(P ))i∈P is a strong Nash equilibrium that satisfies (a), (b),

and (c) in the corresponding contribution game for each P ⊆ N . Given (γi)i∈N , the volun-

tary participation game is reduced to the following game: each agent i ∈ N chooses 0 or 1,

simultaneously. Let P ⊆ N be a set of participants. Each i ∈ P pays
∑t
z=1 γ

z
i (P ) and P

provides ψ((γi(P ))i∈P ) units of the public good. Let yP ≡ ψ((γi(P ))i∈P ), x
P
i ≡

∑t
z=1 γ

z
i (P )

for each i ∈ P , and xPi ≡ 0 for each i /∈ P . By Lemma 3, yP ∈ argmaxy∈Y
∑
i∈P Bi(y)− c(y),∑

i∈P x
P
i = c(yP ), Bi(y

P ) ≥ xPi for each i ∈ P , and xPi > 0 for each i ∈ P ∩N (0, yP ].

5.1 A Nash equilibrium set of participants

We characterize a set of participants that is supported at a pure-strategy Nash equilibrium of

the induced participation game.

Lemma 5 Given that the second-stage outcome satisfies GE, IR, and PCS for each set of

participants, a set of participants P ⊆ N is supported at a Nash equilibrium if and only if

for each i ∈ P , if xPi > 0, then yP\{i} < Yi, and (IS)

for each i /∈ P , if yP∪{i} ≥ Yi > yP , then θi − x
P∪{i}
i = 0. (ES)

Proof. (Necessity) If xPi > 0 and yP\{i} ≥ Yi for some i ∈ P , then i wants to switch

from participating to not participating. If there is i /∈ P such that yP∪{i} ≥ Yi > yP and

θi − x
P∪{i}
i > 0, then agent i is better off participating in P . Hence, for each i /∈ P , if

yP∪{i} ≥ Yi > yP , then θi − x
P∪{i}
i ≤ 0. It is immediate from IR that ES holds.

(Sufficiency) By IR, Vi(y
P , xPi ) ≥ 0 for each i ∈ P . By IS and PCS, Vi(y

P\{i}, x
P\{i}
i ) = 0
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for each i ∈ P such that xPi > 0. Let k ∈ P be such that xPk = 0. By PCS, Yk > yP .

Hence, Vk(y
P , xPi ) = 0. Since yP\{k} = yP < Yk, then Vk(y

P\{k}, x
P\{k}
k ) = 0. Thus, k

is not made better off by switching from participating to not participating. Let j /∈ P be

such that yP∪{j} ≥ Yj . Then, Vj(y
P∪{j}, x

P∪{j}
j ) = θj − x

P∪{j}
j . If yP∪{j} ≥ Yj > yP ,

then by ES, Vj(y
P∪{j}, x

P∪{j}
j ) = Vj(y

P , xPj ) = 0. If yP∪{j} ≥ yP ≥ Yj , then by PCS,

Vj(y
P∪{j}, x

P∪{j}
j ) < Vj(y

P , xPj ) = θj . Clearly, no i /∈ P such that yP∪{i} < Yi switches to

participate. �

Condition IS means that no member of P (s) gains by switching to not participating. Con-

dition ES means that no outsider of P (s) gains by joining in P (s). These are adaptations of

the internal and external stability of d’Aspremont et al (1983).

5.2 Properties of possible demand levels

In the induced participation game, under GE, if P ⊆ N is a set of participants and P produces

yl ∈ Y units of the public good, then
∑
j∈P Bj(y

l)−c(yl) ≥
∑
j∈P Bj(y)−c(y) for each y ∈ Y.

This condition implies that

1.
∑

j∈N (yk,yl]∩P

θj ≥ c(yl)− c(yk) for each yk ∈ {0} ∪ Y such that yl > yk and

2.
∑

j∈N (yl,yk]∩P

θj ≤ c(yk)− c(yl) for each yk ∈ {0} ∪ Y such that yl < yk.

Given (γi)i∈N , denote Y ≡
{
y ∈ Y| yP = y for some P ⊆ N

}
: y ∈ Y is the level of the

public good that some set of participants produces in the induced participation game. We

call a demand level belonging to Y a possible demand level. Let Y ≡ {y1, . . . , ym} be such

that 1 ≤ m ≤ t and yl−1 < yl for each l ∈ {2, . . . ,m}. Lemma 6 is a basic property of Y.

Lemma 6 Given (γi)i∈N that satisfies (a), (b), and (c),
∑
j∈N (yl−1,yl] θj ≥ c(yl)− c(yl−1) for

each yl ∈ Y, where y0 ≡ 0.

Proof. Suppose, to the contrary, that
∑
j∈N (yl−1,yl] θj < c(yl) − c(yl−1) for some yl ∈ Y.

Let P ⊆ N be such that yP = yl. By GE,
∑
j∈P∩N (yl−1,yl] θj ≥ c(yl) − c(yl−1). However,
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∑
j∈P∩N (yl−1,yl] θj ≤

∑
j∈N (yl−1,yl] θj < c(yl)− c(yl−1), which is a contradiction. �

Note that we do not assume any condition for the preferences and cost except for (2). There

may be a case in which
∑
j∈N(yl) θj < c(yl) − c(yl−1) for some yl ∈ Y. Lemma 6 says that

if the level of the public good increases from one possible demand level to a higher possible

demand level, then the sum of the marginal benefits is not less than the incremental cost.

Lemma 7 Given (γi)i∈N that satisfies (a), (b), and (c), argmaxy∈Y
∑
j∈P Bj(y) − c(y) ⊆

argmaxy∈Y
∑
j∈P Bj(y)− c(y) for each P ⊆ N .

Proof. Suppose, to the contrary, that there exists y′ ∈ argmaxy∈Y
∑
j∈P Bj(y) −

c(y)\ argmaxy∈Y
∑
j∈P Bj(y)− c(y). Then, there exists y′′ ∈ Y\Y such that

∑
j∈P Bj(y

′′)−

c(y′′) >
∑
j∈P Bj(y

′)− c(y′). By the construction of (γi)i∈N , yP ∈ argmaxy∈Y
∑
j∈P Bj(y)−

c(y); hence,
∑
j∈P Bj(y

P ) − c(yP ) ≥
∑
j∈P Bj(y

′) − c(y′). Since yP ∈ Y and

y′ ∈ argmaxy∈Y
∑
j∈P Bj(y) − c(y), then

∑
j∈P Bj(y

P ) − c(yP ) ≤
∑
j∈P Bj(y

′) − c(y′). In

conclusion,
∑
j∈P Bj(y

′′) − c(y′′) >
∑
j∈P Bj(y

′) − c(y′) =
∑
j∈P Bj(y

P ) − c(yP ), which

implies that yP does not maximize
∑
j∈P Bj(y)− c(y), a contradiction. �

By Lemma 7, the efficient level of the public good within Y is also efficient within Y. By

Lemma 6, ym ∈ argmaxy∈Y
∑
j∈N Bj(y) − c(y). By Lemma 7, ym is an efficient level of the

public good.

6 Subgame perfect Nash equilibria of the participation game

In this section, we assume that for each P ⊆ N , if P is a set of participants, then P chooses

one of allocations that satisfy IR, PCS, and GE’ for P , defined as follows:

Group efficiency with the maximal public good (GE’) for P ⊆ N : the sec-

ond stage outcome when P is a set of participants (yP , (xPi )i∈P ) satisfies yP =

max argmaxy∈Y
∑
i∈P Bi(y)− c(y) and

∑
i∈P x

P
i = c(yP ).

The group efficient level of the public good for a set of participants may be multiple. GE’
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requires that if there are multiple group-efficient levels of the public good for a set of partic-

ipants, the participants produce the greatest level among them.7 Hereafter, Y is the set of

possible demand levels under GE’. Note also that as in Section 4, we can construct a strong

Nash equilibrium that supports an allocation with GE’, IR, and PCS.

6.1 The existence of an efficient subgame perfect Nash equilibrium

Lemma 8 If the second-stage allocation satisfies GE’ for each P ⊆ N , then for each yl ∈ Y,

there exists a set of participants P such that P satisfies IS and yP = yl.

Proof. We construct an internally stable set of participants that produces ym units of the

public good. We inductively define {Pm, Pm−1, . . . , P 1} such that P k ⊆ N (yk−1, yk] for each

yk ∈ Y from step m to step 1.

Step m. First, pick up Pm such that

Pm ∈ arg min
P⊆N (ym−1,ym]

∑
j∈P

θj subject to
∑
j∈P

θj ≥ c(ym)− c(ym−1).

After taking Pm, go to Step m− 1.

Step l ∈ {1, . . . ,m− 1}. Suppose that we have picked up Pm, . . . , P l+1 along this way. At

Step l, we set P l.

(l.a) If
∑
j∈Pm∪...∪P l+1 θj < c(ym)− c(yl−1), then

P l ∈ arg min
P⊆N (yl−1,yl]

∑
j∈P

θj subject to
∑
j∈P

θj ≥ c(ym)− c(yl−1)−
∑

j∈Pm∪...∪P l+1

θj .

(l.b) Otherwise, P l = ∅.

After defining P l, go to Step l − 1. The following steps continue to set P 1 similarly.

Note that we can pick up from Pm to P 1 by Lemma 6. Let P ∗ ≡ P 1 ∪ · · · ∪ Pm.

7 Note that this is just a tie-breaking rule, and we can modify the proof of our results according to this
tie-breaking rule.
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Claim 1 It follows that yP
∗
= ym.

Proof of Claim 1. We need to show that ym = max argmaxy∈Y
∑
j∈P∗ Bj(y)− c(y). Since

P ∗ satisfies ∑
j∈Pm∪···∪Pk

θj ≥ c(ym)− c(yk−1) for each k such that yk ∈ Y

where y0 ≡ 0, then ym ∈ argmaxy∈Y
∑
j∈P∗ Bj(y) − c(y). By Lemma 7, ym ∈

argmaxy∈Y
∑
j∈P∗ Bj(y)−c(y). Suppose, to the contrary, that there exists y′ ∈ Y\{ym} such

that y′ = max argmaxy∈Y
∑
j∈P∗ Bj(y)− c(y) > ym. Since ym ∈ argmaxy∈Y

∑
j∈P∗ Bj(y)−

c(y), then
∑
j∈P∗∩N (ym,y′] θj = c(y′) − c(ym). However, by the construction of P ∗,

P ∗ ∩ N (ym, y′] = ∅, which implies that 0 =
∑
j∈P∗∩N (ym,y′] θj < c(y′) − c(ym). This is a

contradiction. ||

We prove that P ∗ satisfies IS in Claim 2.

Claim 2 For each i ∈ P ∗, yP
∗\{i} < Yi.

Proof of Claim 2. Suppose, to the contrary, that there exists i ∈ P ∗ such that yP
∗\{i} ≥ Yi.

Let l ∈ {1, . . . ,m} be such that i ∈ P l. Let yk ∈ Y be such that yk = yP
∗\{i}. Since

P l ⊆ N (yl−1, yl], then yl−1 < Yi ≤ yl. Since yl−1 < Yi and Yi ≤ yk, then l − 1 < k. Since Y

is discrete and yl and yl−1 lie next to each other, it is impossible that l > k > l− 1. Thus, we

have k ≥ l > l − 1. By the construction of P ∗, m > k.8

By the construction of (γi)i∈N and GE’, yk = max argmaxy∈Y
∑
j∈P∗\{i}Bj(y) − c(y).

Then,
∑
j∈(P∗\{i})∩N (yl−1,yk] θj ≥ c(yk)− c(yl−1). Since P ∗ ∩N (yl−1, yk] = P l ∪ · · · ∪ P k,∑

j∈(P∗\{i})∩N (yl−1,yk]

θj =
∑

j∈P∗∩N (yl−1,yk]

θj − θi =
∑

j∈P l∪···∪Pk

θj − θi.

Hence,
∑
j∈Pk∪···∪P l θj − θi ≥ c(yk)− c(yl−1).

By the construction of P l,
∑
j∈Pm∪···∪P l θj − θi < c(ym)− c(yl−1), which can be rewritten

8 Suppose, to the contrary, that yk = ym. By the construction of P ∗,
∑

j∈Pm∪···∪(P l\{i}) θj <

c(ym) − c(yl−1). Since yk = ym, then
∑

j∈Pk∪···∪(P l\{i}) θj < c(yk) − c(yl−1). By yP
∗\{i} = yk,∑

j∈Pk∪···∪(P l\{i}) θj ≥ c(yk)− c(yl−1), which is a contradiction.
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as ∑
j∈Pk∪···∪P l

θj − θi < c(ym)− c(yl−1)− [
∑

j∈Pm∪···∪Pk+1

θj ]

= c(ym)− c(yk) + c(yk)− c(yl−1)− [
∑

j∈Pm∪···∪Pk+1

θj ].

Since
∑
j∈Pm∪···∪Pk+1 θj ≥ c(ym)− c(yk), then

∑
j∈Pk∪···∪P l θj − θi < c(yk)− c(yl−1), which

is a contradiction. ||

For the other levels of the public good yk ∈ Y such that yk < ym, we can construct a set of

participants P such that yP = yk and P satisfies IS by similar steps. �

In the proof of Lemma 8, we construct a set of participants that produces ym units of

the public good and from which no participant wants to withdraw. For this construction, we

iteratively take an operator “argmin” and construct a set as small as possible. Of course, there

are other sets that produce ym units of the public good. However, if a set of participants is

“too large,” then there may be a case in which even if one of the members withdraws from the

set, her demand level is fulfilled. In such a case, she must want to deviate to not participating.

Claim 2 shows that if every participant withdraws from the constructed set, her demand level

is not met. That is, the participation of every agent in the set is necessary to fulfill her demand

level. Since every member of the constructed set is “pivotal” to fulfill her demand, she has no

incentive not to participate.

Since ym is the maximal possible demand level, P ∗ in the above proof trivially satisfies ES.

Therefore, in the induced participation game, under GE’, there exists a Nash equilibrium set

of participants that provides the public good efficiently. Thus, there is an efficient subgame

perfect Nash equilibrium in the voluntary participation game.

Proposition 1 The participation game has an efficient subgame perfect Nash equilibrium.
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6.2 Existence of inefficient equilibria

The induced participation game may have a Nash equilibrium at which the level of the public

good is inefficient. If an internally stable set that produces an inefficient level of the public

good satisfies ES, then the inefficient level is provided at an equilibrium. While in Example

1, no set of participants that produces the public good inefficiently satisfies ES, in Example

2, for each inefficient demand level, there is a set of participants that satisfies IS and ES.

Example 1 Let Y = {y1, y2}, with c(y1) = c(y2) − c(y1) = 10. Let N(y1) = {1} and

N(y2) = {2}, with θ1 = θ2 = 12. Pick up (γi)i∈N such that the second-stage outcome satisfies

GE, IR, and PCS for each set of participants. Then, Y = Y. Set {1, 2} is the only the set

that satisfies IS and ES. Thus, No inefficient Nash equilibrium exists.

Example 2 Let N(y1) = {1, 2} and N(y2) = {3, 4}, with θi = 6 for each i ∈ N . Suppose

that (γi)i∈N satisfies GE, IR, and PCS. The cost function is the same as that in Example

1. Sets N is a Nash equilibrium set of participants at which y2 units of the public good are

provided. Set N(y1) and {∅} satisfy IS and ES. Thus, each y ∈ Y ∪ {0} is supported at a

Nash equilibrium.

Note that
∑
j∈N Bj(y) and c(y) are the same across these examples, which implies that

the efficient level of the public good is the same in these examples. In this sense, they are

equivalent. The difference lies in the benefit of each agent. For each demand level, an agent’s

benefit in Example 1 is twice as large as in Example 2. We can confirm from these examples

that if the benefit of an agent is sufficiently smaller than the marginal cost, then her additional

participation is not sufficient to fulfill her demand level. Hence, she is indifferent between

participating and not participating. This is the reason why the inefficient Nash equilibrium is

likely to exist when the per-capita benefit from the public good is sufficiently small.

Lemma 9 Suppose that GE’ holds. (i) In the induced participation game, for each yl ∈ {0}∪

Y\{ym}, if θi < c(Yi)−c(yl) for each i ∈ N such that Yi > yl , then there is a Nash equilibrium
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set of participants that produces yl units of the public good. (ii) If θi < c(yk+1) − c(yk) for

each yk ∈ Y ∪ {0} and each i ∈ N (yk, yk+1], then for each yl ∈ Y ∪ {0}, there is a Nash

equilibrium that produces yl units of the public good.

Proof. (i) By Lemma 8, P ⊆ N (0, yl] can be constructed such that P satisfies IS and

yP = yl. When yl = 0, set P = ∅. For each i ∈ N such that Yi > yl, if i additionally joins P ,

the public good level is unchanged. Hence, P satisfies ES.

(ii) Let yl ∈ Y ∪ {0} and let i ∈ N be such that Yi > yl. Denote yr ≡ Yi. Then,

i ∈ N (yr−1, yr] and by the hypothesis, θi < c(yr) − c(yr−1). Since yr > yr−1 ≥ yl and

c(yr−1) ≥ c(yl), θi < c(yr)− c(yr−1) ≤ c(yr)− c(yl). By (i) of Lemma 9, yl units of the public

good are provided at a Nash equilibrium. �

Proposition 2 summarizes the results of section 6.2.

Proposition 2 If the benefit of every agent from the public good is sufficiently small relative

to the cost, then the participation game has an inefficient subgame perfect Nash equilibrium. In

some cases, for each possible level of the public good, including zero units, there is a subgame

perfect Nash equilibrium that produces it.

Furusawa and Konishi (2011), Healy (2010), and Konishi and Shinohara (2012) show that

as the proportion of agents in a population decreases, the level of the public good at an

equilibrium diminishes to zero.9 They study a preference domain on which agents’ utilities

continuously and monotonically increase with respect to the level of the public good. An

intuitive reason for their result is that as a proportion of an agent gets small, she becomes less

influential on public good provision: a small agent does not have enough power to change the

level of the public good. However, if she participates, then she defrays a cost of a public good.

Thus, when the “size” of an agent is sufficiently small, she refrains from participating, which

causes the inefficient provision of a public good. This does not apply to our model. Given a

9 They adopt Milleron’s (1972) replication of an economy to investigate this relationship.
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set of participants, if there is a non-participant whose demand level is not fulfilled and her

switch to participation fulfills her demand, then by IR, she obtains a non-negative payoff by

the switch. Thus, she is not worse off by participating. The discontinuity of a benefit and IR

guarantee a participation incentive around the demand level. Note that this applies to the

case in which the size of an agent is very small. Thus, at an equilibrium, a positive level of

the public good is always provided even if a proportion of an agent becomes infinitely small.

7 Efficient subgame perfect Nash equilibria and coordination

Consider the situation in which agents can coordinate their strategies. What consequences

does such coordination lead to? We determine which subgame perfect Nash equilibria can be

achieved through coordination, as modeled through a strong perfect equilibrium.

Since the strong perfect equilibrium is stronger than the subgame perfect Nash equilibrium,

we first show that the strong perfect equilibrium exists in the voluntary participation game.

Proposition 3 There is a strong perfect equilibrium in the voluntary participation game.

The proof is in the appendix.

In the appendix, we construct an efficient subgame perfect Nash equilibrium s ∈ Sn at

which ym units of the public good are provided. A feature of s is that

(?) if a member of P (s) joins in a deviation, her contribution does not decrease whenever

her demand level is fulfilled after the deviation.

This feature plays an important role in showing that s is strongly perfect.

We briefly present a reason why no coalition can profitably deviate from s. For this, it is

convenient to divide N into (N\P (s)) ∩N (0, ym], P (s) ∩N (0, ym], and N (ym, yt].

At s, every i ∈ (N\P (s)) ∩ N (0, ym] chooses not to participate and obtains payoff θi at s.

Payoff θi is the greatest payoff that i can obtain. Thus, if i ∈ (N\P (s)) ∩ N (0, ym] joins in

the deviation, she is not made better off.
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No agent in N (ym, yt] joins in the deviation, either. At s, the demand level of every agent

in N (ym, yt] is not fulfilled and her payoff is zero. If agent i ∈ N (ym, yt] is made better off,

her demand level is fulfilled after the deviation: the level of the public good must be greater

than or equal to Yi. It is necessary for the provision of at least Yi units of the public good that

members of the deviation cover at least c(Yi)− c(ym). However, since ym is an efficient level

of the public good, the additional benefit from the increase from ym to Yi,
∑
j∈N (ym,Yi]

θj , is

not greater than c(Yi)− c(ym). Hence, if agents in N (ym, Yi] deviate from s, it is impossible

to make all of them better off. In order for agents in N (ym, Yi] to be made better off, it is

necessary that agents in N (ym, Yi] deviate jointly with at least one agent j ∈ P (s)∩N (0, ym]

and j defrays some portion of c(Yi) − c(ym). If such a deviation is done, j’s demand level is

fulfilled because Yi > ym ≥ Yj . However, by (?), j’s cost share does not decrease after the

deviation. Thus, j is not made better off. It is impossible for a member of N (ym, yt] to be

made better off.

A deviation among agents in P (s) is also not profitable. If a cost share of some agent

decreases, it is necessary to maintain the level of the public good to increase a cost share of

another agent in P (s). Thus, deviation by only the internal members of P (s) is not profitable.

In conclusion, no coalitional deviation from s can be profitable.

Proposition 4 Only the efficient subgame perfect Nash equilibrium is a strong perfect equi-

librium.

Proof. Let s = (s1, (γi)i∈N ) ∈ S be an inefficient subgame perfect Nash equilibrium. We

show that s is not strongly perfect. Let yl ∈ Y be the level of the public good that P (s)

produces at s. We first consider the case in which P (s) does not provide a public good at its

group efficient level.

Case 1. yl /∈ argmaxy∈Y
∑
i∈P (s)Bi(y)− c(y).

Let yk = max argmaxy∈Y
∑
i∈P (s)Bi(y)−c(y). By Lemma 1, yk > yl and

∑
i∈P (s)∩N (yl,yk] θi >

c(yk) − c(yl). By Lemma 1, since s is a Nash equilibrium, γzi (P (s)) = 0 for each i ∈ P (s)
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such that Yi > yl and each z such that yz ∈ Y. Hence,
∑
i∈P (s)∩N (0,yl] γ

z
i (P (s)) ≥

c(yz) − c(yz−1) for each z ∈ {1, . . . , l}. Since
∑
i∈P (s)∩N (yl,yk] θi > c(yk) − c(yl), then

for each z ∈ {l + 1, . . . , k}, there is (σzi )i∈P (s)∩N (yl,yk] ∈ R|P (s)∩N (yl,yk]|
+ such that∑

i∈P (s)∩N (yl,yk] σ
z
i = c(yz) − c(yz−1) and θi −

∑k
r=l+1 σ

r
i > 0 for each i ∈ P (s) ∩ N (yl, yk].

Set (γ′i(P (s)))i∈P (s)∩N (yl,yk] such that for each i ∈ P (s) ∩N (yl, yk],

γ′zi (P (s)) =

{
σzi if z ∈ {l + 1, . . . , k},
0 otherwise.

While the payoff to every agent in P (s) ∩ N (yl, yk] is zero at (γi(P (s)))i∈P (s)∩N (yl,yk], the

payoff to every agent in P (s) ∩ N (yl, yk] is positive at (γ′i(P (s)))i∈P (s)∩N (yl,yk]. Thus, if

P (s)∩N (yl, yk] deviates from (γi(P (s)))i∈P (s)∩N (yl,yk] to (γ′i(P (s)))i∈P (s)∩N (yl,yk], then every

agent in P (s) ∩N (yl, yk] is made better off.

We next consider the case in which P (s) produces a public good at its group efficient level,

but the level is not efficient in the economy.

Case 2. yl ∈ argmaxy∈Y
∑
i∈P (s)Bi(y)− c(y)\ argmaxy∈Y

∑
i∈N Bi(y)− c(y).

Let yk = max argmaxy∈Y
∑
i∈N Bi(y) − c(y). Then,

∑
i∈N (yl,yk] θi > c(yk) − c(yl). By

Lemma 1,
∑t
z=1 γ

z
i (P (s)) = 0 for each i ∈ P (s) ∩ N (yl, yk]. The payoff to every agent in

P (s) ∩N (yl, yk] is zero.

Denote D ≡ P (s)∪N (yl, yk]. Set s′D = (s′1, (γ′i)i∈D) such that s′1i = 1 for each i ∈ D. Since∑
i∈N (yl,yk] θi > c(yk)−c(yl), we can set (γ′i)i∈N (yl,yk] such that

∑
i∈N (yl,yk] γ

′z
i (D) = c(yz)−

c(yz−1) for each z ∈ {l+1, . . . , k}, γ′zi (D) = 0 for each z > k, and θi−
∑k
z=l+1 γ

′z
i (D) > 0 for

each i ∈ N (yl, yk]. For each i ∈ N (yl, yk], there exists σi > 0 such that θi −
∑k
z=l+1 γ

′z
i (D)−

σi > 0. If every i ∈ N (yl, yk] contributes σi to the provision of the public good of less than yl

units, we can set (γ′i(D))i∈P (s)∩N (0,yl] such that γ′zi (D) ≤ γzi (P (s)) for each i ∈ P (s)∩N (0, yl]

and each z ∈ {1, . . . , l} with strict inequality for at least one z,
∑
i∈D γ

′z
i (D) = c(yz)−c(yz−1)

for each z ∈ {1, . . . , l}, and γ′zi (D) = 0 for each z > l. If D deviates from sD to s′D, then

every agent in D is made better off.

In Cases 1 and 2, s is unstable against a coalitional deviation. �
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8 Extention: Multiple thresholds

In the real world, there may be a situation in which an individual has multiple thresholds and

her benefit from a public good gradually increases as the threshold is fulfilled. We extend the

analysis to such a case and examine whether the participation game has a subgame perfect

Nash equilibrium to produce an efficient allocation.

We introduce a benefit function of each agent in such a way that her benefit can have

more than one threshold. Let Y = {y1, . . . , yt}, where t is a positive integer, be the set of

thresholds at which the benefit of an agent in the economy increases. Let θki ≥ 0 be an

additional benefit of agent i ∈ N at the level yk ∈ Y. To define a benefit function consistently,

we define θ0i ≡ 0 for each i ∈ N . The benefit function of i ∈ N , Bi(y), is defined as follows:

Bi(y) =
∑l−1
k=0 θ

k
i if y ∈

[
yl−1, yl

)
, where 1 ≤ l ≤ t. The payoff function of i ∈ N is similar:

Vi(y, xi) = Bi(y) − xi. The cost function is the same as in the previous sections. We can

define the voluntary participation game similarly.10 Note that if for each i ∈ N there is the

unique k ∈ {1, . . . , t} such that θki > 0, then the model is the same as in the previous sections.

We first provide an example in which agents have multiple thresholds and no equilibrium

supports the efficient provision of a public good. Thus, if agents have a demand level but their

thresholds are more than one, then a public good may be under-provided in the voluntary

participation game.

Example 3 Let N = {1, 2}. Let Y = {y1, y2} be such that y1 < y2. Let
(
θ11, θ

2
1

)
= (12, 9)

and
(
θ12, θ

2
2

)
= (12, 2). Both agents have the same thresholds. Let c(y1) = 10 and c(y2) = 20.

In this case, y2 is the only efficient level of the public good. We show that there is no subgame

perfect Nash equilibrium on the path of which y2 units of the public good are provided. We

start with the analysis of the second stage. When only one agent participates, y1 units of the

public good are provided at a Nash equilibrium. When both agents participate, y1 and y2

10 We assume that the second stage of the voluntary participation game is the same as that in the previous
analysis. Note that the second-stage contribution game can be applied to this extended model.
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are supported at a Nash equilibrium in the contribution game.11 Since N is the only set of

participants that produces y2 at an equilibrium, if N provides y1 units of the public good, then

y2 units of the public good can not be provided. Hence, to examine whether y2 units of the

public good are provided at an equilibrium, we necessarily assume that N provides y2 units of

the public good at a Nash equilibrium. Since N provides y2, then
∑
i∈N (γ1i (N) + γ2i (N)) ≥

c(y2). Given this second-stage equilibrium, if both agents participate at a Nash equilibrium,

then Bi(y
2)−

(
γ1i (N) + γ2i (N)

)
≥ Bi(y

1) for each i ∈ N . Thus, θi2 ≥ γ1i (N)+ γ2i (N) for each

i ∈ N . Summing up this condition over i ∈ N yields
∑
i∈N θi2 ≥

∑
i∈N (γ1i (N)+γ2i (N)). Since∑

i∈N (γ1i (N) + γ2i (N)) ≥ c(y2), we have
∑
i∈N θi2 = 11 ≥ 20, which is impossible. Therefore,

no subgame perfect Nash equilibrium exists such that the public good is provided efficiently.

Of course, no strong perfect equilibrium exists.

We next provide an example in which every agent has two thresholds that are not the same

across the agents. In this example, there is a subgame perfect Nash equilibrium that produces

an efficient allocation.

Example 4 Let N = {1, 2}. Let Y = {y1, y2, y3} be such that y1 < y2 < y3. Let(
θ11, θ

2
1, θ

3
1

)
= (12, 6, 0) and

(
θ12, θ

2
2, θ

3
2

)
= (0, 6, 12). Let c(y1) = 10, c(y2) = 20, and c(y3) = 30.

In this case, y3 is the only efficient level of the public good. We can check that the following

strategy profile (s1, (γi)i∈N ) is a subgame perfect Nash equilibrium on the path of which y3

units of the public good are provided:

• s11 = s12 = 1 (both agents participate)

• For each i ∈ N ,
(
γki (P )

)
k∈{1,2,3} such that P ⊆ N satisfies

(
γk1 (P )

)
k∈{1,2,3} =

{
(10, 0, 0) if P = {1}
(10, 5, 0) if P = N

and
(
γk2 (P )

)
k∈{1,2,3} =

{
(0, 0, 0) if P = {2}
(0, 5, 10) if P = N

.

11 For example,
(
γ1
1(N), γ2

1(N)
)
= (5, 8.5) and

(
γ1
2(N), γ2

2(N)
)
= (5, 1.5) constitute a Nash equilibrium

at which y2 units of the public good are provided, and
(
γ1
1(N), γ2

1(N)
)
= (0, 0) and

(
γ1
2(N), γ2

2(N)
)
=

(10, 0) constitute a Nash equilibrium at which y1 units of the public good are produced.
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We explain the reason why there is not necessarily a subgame perfect equilibrium set of

participants that produces a public good efficiently in the model of multiple thresholds. In

order to explain it, we must consider what the benefits and the costs of participating are.

Consider a situation in which i ∈ N decides whether she joins in P\{i} ( N . If i does not join

in P\{i}, then i can free-ride the public good provided by P\{i}, denoted by yP\{i}. If i joins,

then the level of a public good, denoted by yP , may be greater than yP\{i}. If yP > yP\{i},

i’s (gross) benefit from yP is greater than the benefit from yP\{i} in the multiple-threshold

model. The additional benefit from participating is the difference in benefits. If i ∈ N joins

in P\{i}, she shares the cost of the public good. Let xPi be this cost burden. This is the cost

of participating. Therefore, i ∈ N joins in P\{i} only if

Bi(y
P )−Bi(y

P\{i}) ≥ xPi . (6)

Summing up (6) over i ∈ P yields∑
i∈P

[
Bi(y

P )−Bi(y
P\{i})

]
≥

∑
i∈P

xPi ≥ c(yP ). (7)

The last inequality follows from the budget feasibility. Therefore, (7) is a necessary condition

for P ⊆ N to be supported at an equilibrium. This condition requires that the sum of

additional benefits of the participants covers the cost of the public good.

In the case in which each agent has the only threshold, there is a set of participants that

satisfies (7) and provides a public good efficiently. Set P ∗, which is constructed in the proof

of Lemma 8, is such an example. For each i ∈ P ∗, yP
∗\{i} < Yi; hence, (7) is equivalent to∑

i∈P∗ Bi(y
P∗

) ≥ c(yP
∗
). Since P ∗ provides a group efficient level of a public good for P ∗,∑

i∈P∗ Bi(y
P∗

) ≥ c(yP
∗
). Thus, GE for P ∗ implies that P ∗ satisfies (7). In the case in which

each agent has multiple thresholds, GE also implies that
∑
i∈P Bi(y

P ) ≥ c(yP ). However,

since Bi(y
P\{i}) may not be zero for some P ⊆ N and some i ∈ P , it does not generally imply

(7).12 Thus, in this case, even if each P ⊆ N provides a group efficient level of a public good,

there may not be an equilibrium set of participants that provides the public good efficiently.

12 While Bi(y
P\{i}) > 0 for each i ∈ N in Example 3, it is equal to zero for each i ∈ N in Example 4.
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It is also worth noting that (6) is equivalent to IR for P ∗ when each agent has a single

threshold: IR for P ∗ guarantees the participation incentive. In the case in which each agent

has multiple thresholds, if a set of participants is supported at a Nash equilibrium, then an

incremental benefit from participating (not a whole benefit) covers the cost burden of each

participant. This condition is stronger than IR. As in Example 3, if the participation of an

agent whose incremental benefit is small is necessary to provide a public good efficiently, then

the public good is unlikely to be produced efficiently because the small incremental benefit

may not cover the payment, which is distributed based on the total, not incremental, cost of

the public good.

9 Concluding remarks

We examine the participation problem in public good provision when agents have demand

levels for the public good. In our model, agents can benefit from a public good if the public

good is provided at a level greater than their demand level. First, we show that there exists a

subgame perfect Nash equilibrium on the path of which the public good is produced efficiently.

Second, we confirm that there may exist a subgame perfect Nash equilibrium at which the

public good is produced inefficiently. Third, coordination modeled through a strong perfect

equilibrium singles out the efficient subgame perfect Nash equilibrium. Fourth, if agents have

multiple thresholds, then there may be no subgame perfect Nash equilibrium at which the

public good is produced efficiently.

Earlier studies have pointed out that the voluntary participation problem is serious. How-

ever, when each agent has a single demand level, the efficient provision of the public good

is supported at a subgame perfect Nash equilibrium and only the efficient provision of the

public good is attained through coordination. Hence, we can conclude that the problem is

not as serious as the earlier studies report in cases in which each agent has a single threshold.

However, in other cases, the participation problem may be serious. In such cases, we must

construct a mechanism that induces voluntary participation and the efficient provision of pub-
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lic goods to solve the problem, such as the unit-by-unit participation mechanism of Nishimura

and Shinohara (2011). The construction of a mechanism that can be applied to our model is

left for future work.

Appendix: Proof of Proposition 3

We first construct a strategy profile and then show that it is a strong perfect equilibrium.

Suppose that ym ∈ Y corresponds to ym ∈ Y. Let P ∗ ⊆ N be a set of participants that

produces ym units of the public good and is constructed according to the method of the proof

of Lemma 8. For each i ∈ P ∗, let gi = (gzi )
t
z=1 ∈ Rt+ be a vector of marginal contributions

that is constructed in Section 4: (i) for each yz ∈ Y such that yz > Yi, g
z
i = 0, (ii) for each

z ∈ {1, . . . ,m} and each i ∈ P ∗ ∩ N (yz−1, ym],
∑
i∈P∗∩N (yz−1,ym] g

z
i = c(yz) − c(yz−1) and

θi −
∑m
k=z g

k
i ≥ 0, and (iii) for each i ∈ P ∗,

∑m
z=1 g

z
i > 0. We can take such gi in a manner

similar to the proof of Lemma 2.

Let s = (s1, (γi)i∈N ) ∈ S be such that P (s) = P ∗, constructed in Lemma 8, and γi(P
∗) = gi

for each i ∈ P ∗. Define (γi(P ))i∈P for each P ⊆ N such that P 6= P ∗ as follows:

(a) If P ∩P ∗ = ∅, then (γi(P ))i∈P is an arbitrary profile of a vector of marginal contributions

that is supported at a strong Nash equilibrium of the contribution game when P is a set

of participants.

(b) If P ∗ ⊆ P , then for each i ∈ P ,

γi(P ) ≡

{
gi if i ∈ P ∗

(0, . . . , 0) ∈ Rt+ otherwise
.

(c) Let yl = max argmaxy∈Y
∑
i∈P Bi(y) − c(y). If P ∩ P ∗ 6= ∅, but not P ∗ ⊆ P , then

(γi(P ))i∈P is defined as follows:

(c.1) For each i ∈ P such that Yi > yl and each z ∈ {1, . . . , t}, γzi (P ) ≡ 0. For each

i ∈ P ∩N (0, yl] and each z ∈ {1, . . . , t}, if yz > Yi, then γ
z
i (P ) ≡ 0.

(c.2) For each k ∈ {1, . . . , l} and each i ∈ P ∩ N (yk−1, yl], θi −
∑t
z=k γ

z
i (P ) ≥ 0 and∑

i∈P∩N (yk−1,yl] γ
k
i (P ) = c(yk)− c(yk−1).
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(c.3) For each k ∈ {1, . . . , l} and each i ∈ P ∩N (yk−1, yl]∩P ∗,
∑l
z=k γ

z
i (P ) ≥

∑l
z=k g

z
i .

13

Clearly, a vector of marginal contributions that satisfies (a) and (b) can be constructed.

Properties (c.1) and (c.2) are the same as (a) and (b) in Section 4. In this section, in addition

to these conditions, we require (c.3). This property means that if a set of participants switches

from P ∗ to P such that P ∩P ∗ 6= ∅ but not P ∗ ⊆ P , then the common members between these

sets whose demand level is met contribute at least the level before the switch. This property

plays an important role in proving that s is a strong perfect equilibrium. We first show that

a vector of marginal contributions can be set in a way that satisfies (c) for each P ⊆ N such

that P ∩ P ∗ 6= ∅ but not P ∗ ⊆ P .

Lemma 10 For each P ⊆ N such that P ∩ P ∗ 6= ∅, but not P ∗ ⊆ P , there is a vector of

marginal contributions that satisfies (c).

Proof. We show by induction. Obviously, (γi)i∈P can be constructed in a way

that satisfies (c.1). We first consider the case of k = l. If
∑
i∈P∩N (yl−1,yl]\P∗ θi ≥

c(yl) − c(yl−1) −
∑
i∈P∩N (yl−1,yl]∩P∗ gli, then γli(P ) = gli for each i ∈ P ∩ N (yl−1, yl] ∩ P ∗

and define (γli(P ))i∈P∩N (yl−1,yl]\P∗ such that
∑
i∈P∩N (yl−1,yl]\P∗ γli(P ) = c(yl) − c(yl−1) −∑

i∈P∩N (yl−1,yl]∩P∗ gli and θi− γli(P ) ≥ 0 for each i ∈ P ∩N (yl−1, yl]\P ∗. Otherwise, by GE,∑
i∈P∩N (yl−1,yl] θi ≥ c(yl)− c(yl−1). By this condition,∑

i∈P∩N (yl−1,yl]∩P∗

(
θi − gli

)
≥ c(yl)− c(yl−1)−

∑
i∈P∩N (yl−1,yl]∩P∗

gli −
∑

i∈P∩N (yl−1,yl]\P∗

θi > 0.

For each i ∈ P ∩N (yl−1, yl] ∩ P ∗, define εli ≥ 0 as∑
i∈P∩N (yl−1,yl]∩P∗

(
θi − gli

)
≥

∑
i∈P∩N (yl−1,yl]∩P∗

εli

= c(yl)− c(yl−1)−
∑

i∈P∩N (yl−1,yl]∩P∗

gli −
∑

i∈P∩N (yl−1,yl]\P∗

θi

13 Note that
∑t

z=1 γ
z
i (P ) =

∑l
z=1 γ

z
i (P ) ≥

∑l
z=1 γ

z
i (P

∗) =
∑t

z=1 γ
z
i (P

∗) for each i ∈ P ∩N (0, yl] ∩ P ∗.
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and θi − gli ≥ εli for each i ∈ P ∩ N (yl−1, yl] ∩ P ∗. Set γli(P ) = gli + εli for each i ∈

P ∩ N (yl−1, yl] ∩ P ∗ and γli(P ) = θi for each i ∈ P ∩ N (yl−1, yl]\P ∗. In conclusion, in any

case, θi− γli(P ) ≥ 0 for each i ∈ P ∩N (yl−1, yl],
∑
i∈P∩N (yl−1,yl] γ

l
i(P ) = c(yl)− c(yl−1), and

γli(P ) ≥ gli for each i ∈ P ∩N (yl−1, yl] ∩ P ∗.

Let k ∈ {1, . . . , l− 1}. Suppose that γzi (P ) is defined in a way that satisfies (c.1) – (c.3) for

each i ∈ P and each z ∈ (k, l]. We now construct γki (P ) for each i ∈ P . Define γki (P ) = 0 for

each i ∈ P ∩N (0, yk−1]. If we set γki (P ) for each i ∈ P ∩N (yk−1, yl]∩ P ∗ in such a way that

γki (P ) ≥ max{0, gki −
∑l
z=k+1(γ

z
i (P )− gzi )}, then

∑l
z=k γ

z
i (P ) ≥

∑l
z=k g

z
i , which is shown in

Claim 3. Hence, (c.3) holds for k.

Claim 3 For each i ∈ P ∩ N (yk−1, yl] ∩ P ∗, if γki (P ) ≥ max{0, gki −
∑l
z=k+1(γ

z
i (P ) − gzi )},

then
∑l
z=k γ

z
i (P ) ≥

∑l
z=k g

z
i .

Proof of Claim 3. If gki −
∑l
z=k+1(γ

z
i (P ) − gzi ) ≥ 0, then it is trivial. If gki −∑l

z=k+1(γ
z
i (P ) − gzi ) < 0, then

∑l
z=k+1 γ

z
i (P ) >

∑l
z=k g

z
i . Since γki (P ) ≥ 0, then∑l

z=k γ
z
i (P ) ≥

∑l
z=k+1 γ

z
i (P ) >

∑l
z=k g

z
i . ||

Denote ∆ ≡ c(yk)− c(yk−1)−
∑
i∈P∩N (yk−1,yl]∩P∗ max{0, gki −

∑l
z=k+1(γ

k
i (P )− gzi )}.

Case 1.
∑
i∈P∩N (yk−1,yl]\P∗(θi −

∑l
z=k+1 γ

z
i (P )) ≥ ∆.

Denote X ≡ {i ∈ P ∩N (yk−1, yl] ∩ P ∗| gki −
∑l
z=k+1(γ

z
i (P )− gzi ) > 0}. Then,

∆ = c(yk)− c(yk−1)−
∑

i∈P∩N (yk−1,yl]∩P∗∩X

gki︸ ︷︷ ︸
(α)

+
∑

i∈P∩N (yk−1,yl]∩P∗∩X

l∑
z=k+1

(γzi (P )− gzi )︸ ︷︷ ︸
(β)

.

By the definitions of gi and the condition that P ∗ ( P does not satisfy, we have

c(yk)− c(yk−1) =
∑

i∈N (yk−1,yl]∩P∗

gki >
∑

i∈P∩N (yk−1,yl]∩P∗

gki ≥
∑

i∈P∩N (yk−1,yl]∩P∗∩X

gki .

Thus, (α) > 0. By the induction hypothesis, (β) ≥ 0. Hence, ∆ > 0.
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Define γki (P ) for each i ∈ P ∩ N (yk−1, yl]\P ∗ such that
∑
i∈P∩N (yk−1,yl]\P∗ γki (P ) = ∆

and θi −
∑l
z=k+1 γ

z
i (P ) ≥ γki (P ) for each i ∈ P ∩ N (yk−1, yl]\P ∗. Set γki (P ) = max{0, gki −∑l

z=k+1(γ
z
i (P )− gzi )} for each i ∈ P ∩ N (yk−1, yl] ∩ P ∗. For each i ∈ P ∩ N (yk−1, yl] ∩ P ∗,

if gki −
∑l
z=k+1(γ

z
i (P ) − gzi ) > 0, then θi −

∑l
z=k γ

z
i (P ) = θi −

∑l
z=k g

z
i ≥ 0. Otherwise,

θi −
∑l
z=k γ

z
i (P ) = θi −

∑l
z=k+1 γ

z
i (P ) ≥ 0 by the induction hypothesis.

Case 2.
∑
i∈P∩N (yk−1,yl]\P∗(θi −

∑l
z=k+1 γ

z
i (P )) < ∆.

By GE,
∑
i∈P∩N (yk−1,yl] θi ≥ c(yl)− c(yk−1). By this condition,∑

i∈P∩N (yk−1,yl]

θi − (c(yl)− c(yk)) ≥ c(yk)− c(yk−1).

By the induction hypothesis,

∑
i∈P∩N (yk−1,yl]

[
θi −

l∑
z=k+1

γzi (P )

]
≥ c(yk)− c(yk−1),

which is equal to

∑
i∈P∩N (yk−1,yl]∩P∗

[
θi −

l∑
z=k+1

γzi (P )

]
≥ c(yk)−c(yk−1)−

∑
i∈P∩N (yk−1,yl]\P∗

[
θi −

l∑
z=k+1

γzi (P )

]
.

We finally have

∑
i∈P∩N (yk−1,yl]∩P∗

[
θi −

l∑
z=k+1

γzi (P )−max

{
0, gki −

l∑
z=k+1

(γki (P )− gzi )

}]

≥ ∆−
∑

i∈P∩N (yk−1,yl]\P∗

[
θi −

l∑
z=k+1

γzi (P )

]
.
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For each i ∈ P ∩N (yk−1, yl] ∩ P ∗, define εki ≥ 0 as

∑
i∈P∩N (yk−1,yl]∩P∗

[
θi −

l∑
z=k+1

γzi (P )−max

{
0, gki −

l∑
z=k+1

(γki (P )− gzi )

}]

≥
∑

i∈P∩N (yk−1,yl]∩P∗

εki

= ∆−
∑

i∈P∩N (yk−1,yl]\P∗

[
θi −

l∑
z=k+1

γzi (P )

]

and θi −
∑l
z=k+1 γ

z
i (P ) − max

{
0, gki −

∑l
z=k+1(γ

k
i (P )− gzi )

}
≥ εki for each i ∈

P ∩N (yk−1, yl] ∩ P ∗. Let

γki (P ) =

{
θi −

∑l
z=k+1 γ

z
i (P ) for each i ∈ P ∩N (yk−1, yl]\P ∗

max
{
0, gki −

∑l
z=k+1(γ

k
i (P )− gzi )

}
+ εki for each i ∈ P ∩N (yk−1, yl] ∩ P ∗ .

In any case, the vector constructed satisfies (c.1) – (c.3). �

Note that by Lemma 4, (γi)i∈N assigns a strong Nash equilibrium for each set of participants.

Note also that s is one of the efficient subgame perfect Nash equilibria. We now show that

s is a strong perfect equilibrium; thus, there is a strong perfect equilibrium in the voluntary

participation game.

Lemma 11 Strategy s is a strong perfect equilibrium.

Proof. At s,

Ui(s) =


θi −

∑m
z=1 γ

z
i (P (s)) ≥ 0 for each i ∈ P (s) ∩N (0, ym]

θi for each i ∈ (N\P (s)) ∩N (0, ym]

0 for each i ∈ N (ym, yt]

.

Suppose, to the contrary, that s is not a strong perfect equilibrium. Then, there are D ⊆ N

and s′D = (s′1D, (γ
′
i)i∈D) ∈ SD such that Ui(s

′
D, s−D) > Ui(s) for each i ∈ D. Let us define

s′ ≡ (s′D, s−D). Note that N = N (ym, yt] ∪ (N (0, ym] ∩ P (s)) ∪ (N (0, ym]\P (s)).

Claim 4 D ∩N (0, ym]\P (s) = ∅.

Proof of Claim 4. At s, each i ∈ N (0, ym]\P (s) receives the payoff θi, which is the greatest
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payoff that i can obtain. Thus, even if i joins in the deviation of D, then she is not made

better off. ||

Claim 5 D ∩N (ym, yt] = ∅.

Proof of Claim 5. Suppose, to the contrary, that D ∩ N (ym, yt] 6= ∅. Let

yk = maxi∈D∩N (ym,yt] Yi. Note that if each i ∈ D such that Yi = yk is made better

off, then P (s′) provides at least yk units of the public good. We assume that P (s′) provides

yk units of the public good at s.14 If P (s′) provides yk units of the public good, it contributes

c(yk) in total. Since ym is an efficient level of the public good and it is the maximal efficient

demand level, ∑
i∈N (ym,yk]∩D

θi ≤
∑

i∈N (ym,yk]

θi < c(yk)− c(ym). (8)

If D ⊆ N (ym, yk], then P (s) ⊆ P (s′). By (8), ym = max argmaxy∈Y
∑
j∈P (s′)Bj(y)− c(y).

By GE’, P (s′) produces ym units of the public good at s. By the construction of (γi)i∈P (s′),

γzi (P (s
′)) = 0 for each i ∈ P (s′)∩N (0, ym] and each z such that yz > ym.15 Then, if yk units

of the public good are produced, then members of D cover c(yk) − c(ym), which is greater

than
∑
i∈N (ym,yk]∩D θi by (8). Thus, if D ⊆ N (ym, yk], it is impossible that every i ∈ D is

made better off.

By Claim 4, if there is i ∈ D such that i /∈ N (ym, yk], then i ∈ D ∩ P (s)∩N (0, ym]. There

must be i ∈ D∩P (s)∩N (0, ym] such that s′1i = 1; otherwise, for each i ∈ D∩P (s)∩N (0, ym],

s′1i = 0, which implies thatD∩P (s′)∩N (0, ym] = ∅. In this case, agents inD∩P (s′)∩N (ym, yk]

must pay a portion of c(ym) in addition to c(yk) − c(ym) to produce yk units of the public

good. Then, by (8), it is impossible that every i ∈ D ∩ N (ym, yk] is made better off. Thus,

P (s) ∩ P (s′) ∩N (0, ym] ∩D 6= ∅.

Let yl = max argmaxy∈Y
∑
i∈P (s′)Bi(y) − c(y). Note that P (s′) produces yl at s and yk

at s′. Since ym is the maximal efficient demand level, then yl ≤ ym. Thus, yl ≤ ym < yk.

14 We can apply similar logic when P (s′) produces a public good at a level higher than yk.
15 Note that P (s) ∩N (0, ym] = P (s′) ∩N (0, ym].
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Since s−D = s′−D, D∩P (s′) must contribute c(yl)−
∑
i∈P (s′)∩N (0,yl]\D

∑l
z=1 γ

z
i (P (s

′)) to the

provision of yl units of the public good and c(yk)− c(yl) to increase a public good from yl to

yk units. Hence,

∑
i∈P (s′)∩D

t∑
z=1

γ′zi (P (s
′)) ≥ c(yl)−

∑
i∈P (s′)∩N (0,yl]\D

l∑
z=1

γzi (P (s
′)) + c(yk)− c(yl). (9)

By the construction of (γi)i∈P (s′),

∑
i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γzi (P (s
′)) =

∑
i∈P (s′)∩N (0,yl]∩D

l∑
z=1

γzi (P (s
′))

= c(yl)−
∑

i∈P (s′)∩N (0,yl]\D

l∑
z=1

γzi (P (s
′)).

(10)

By Claim 4, P (s′)∩N (0, yl]∩D = P (s′)∩ P (s)∩N (0, yl]∩D.16 Hence, by the construction

of (γi)i∈P (s′),

∑
i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γzi (P (s
′)) ≥

∑
i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γzi (P (s)). (11)

For the deviation to be profitable,

∑
i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γzi (P (s)) >
∑

i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γ′zi (P (s
′)). (12)

By the property of yl, ∑
i∈P (s′)∩N (yl,yk]∩D

θi ≤
∑

i∈P (s′)∩N (yl,yk]

θi < c(yk)− c(yl). (13)

By (9) and (10),

∑
i∈P (s′)∩D

t∑
z=1

γ′zi (P (s
′)) ≥

∑
i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γzi (P (s
′)) + c(yk)− c(yl).

16 It is trivial that P (s′) ∩ P (s) ∩ N (0, yl] ∩ D ⊆ P (s′) ∩ N (0, yl] ∩ D. Let i ∈ P (s′) ∩ N (0, yl] ∩ D.
Since N (0, yl] ⊆ N (0, ym], i ∈ D ∩ N (0, ym]. By Claim 4, i ∈ P (s). Thus, P (s′) ∩ N (0, yl] ∩ D ⊆
P (s′) ∩ P (s) ∩N (0, yl].
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By (11) and (13),

∑
i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γzi (P (s
′)) + c(yk)− c(yl)

>
∑

i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γzi (P (s)) +
∑

i∈P (s′)∩N (yl,yk]∩D

θi.

By (12),

∑
i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γzi (P (s)) +
∑

i∈P (s′)∩N (yl,yk]∩D

θi

>
∑

i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γ′zi (P (s
′)) +

∑
i∈P (s′)∩N (yl,yk]∩D

θi.

In conclusion,

∑
i∈P (s′)∩N (yl,yk]∩D

t∑
z=1

γ′zi (P (s
′)) >

∑
i∈P (s′)∩N (0,yl]∩D

t∑
z=1

γ′zi (P (s
′)) +

∑
i∈P (s′)∩N (yl,yk]∩D

θi,

which implies that

∑
i∈P (s′)∩N (yl,yk]∩D

t∑
z=1

γ′zi (P (s
′)) >

∑
i∈P (s′)∩N (yl,yk]∩D

θi. (14)

By (14), there is i ∈ P (s′)∩N (yl, yk]∩D such that θi−
∑t
z=1 γ

′z
i (P (s

′)) < 0. Since Ui(s) = 0

for such an i, i is made worse off by the deviation, which is a contradiction.

Therefore, D ∩N (ym, yt] = ∅. ||

Claim 6 D ∩N (0, ym] ∩ P (s) = ∅.

Proof of Claim 6. Suppose that D ∩ N (0, ym] ∩ P (s) 6= ∅. By Claims 4 and 5, D ⊆

P (s) ∩ N (0, ym]. Then, P (s′) ⊆ P (s). Note that if the deviation of D improves the payoff

to all members of D, then all of their demand levels are fulfilled. First, consider the case

of P (s′) = P (s): that is, s′1i = 1 for each i ∈ D. By the construction of (γi)i∈N , if j ∈ D

reduces her contribution, then j’s demand level is not fulfilled. Then, agent k ∈ D\{j} must

increase her contribution to fulfill j’s demand level, which implies that k is made worse off.
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Second, consider the case of P (s′) ( P (s): that is, s′1i = 0 for some i ∈ D. Since P (s)

satisfies IS, then yq ≤ yr < Yi, in which yq ≡ max argmaxy∈Y
∑
j∈P (s′)Bj(y) − c(y) and

yr ≡ max argmaxy∈Y
∑
j∈P (s)\{i}Bj(y) − c(y). Since P (s′) produces yq units of the public

good and sN\D = s′N\D, then D ∩ P (s′) must pay
∑
j∈P (s′)∩D∩N (0,yq ]

∑q
z=1 γ

z
j (P (s

′)) to

produce yq units of the public good at s′. It also pays c(Yi) − c(yq) to increase the public

good from yq to Yi. If P (s′) produces Yi units of the public good at s′, then D ∩ P (s′) pays

at least c(Yi)− c(yq) +
∑
j∈P (s′)∩D∩N (0,yq]

∑q
z=1 γ

z
j (P (s

′)); hence,

∑
j∈P (s′)∩D∩N (0,yq ]

t∑
z=1

γ′zj (P (s
′)) ≥ c(Yi)− c(yq) +

∑
j∈P (s′)∩D∩N (0,yq ]

q∑
z=1

γzj (P (s
′)).

By the construction of (γi)i∈N ,

c(Yi)− c(yq) +
∑

j∈P (s′)∩D∩N (0,yq ]

q∑
z=1

γzj (P (s
′)) >

∑
j∈P (s′)∩D∩N (0,yq ]

q∑
z=1

γzj (P (s))

Thus, ∑
j∈P (s′)∩D∩N (0,yq ]

t∑
z=1

γ′zj (P (s
′)) >

∑
j∈P (s′)∩D∩N (0,yq ]

q∑
z=1

γzj (P (s)).

Note that
∑
j∈P (s′)∩D∩N (0,yq ]

∑q
z=1 γ

z
j (P (s)) =

∑
j∈P (s′)∩D∩N (0,yq ]

∑t
z=1 γ

z
j (P (s)). Hence,

there is j ∈ P (s′) ∩D ∩ N (0, yq] such that
∑t
z=1 γ

′z
j (P (s

′)) >
∑t
z=1 γ

z
j (P (s)), which implies

that j is made worse off by this deviation.

In conclusion, in any case, if some member of D is made better off, then other members are

made worse off. ||

By Claims 4, 5, and 6, no coalition can profitably deviate from s. �
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